
www.manaraa.com

Columbus State University Columbus State University

CSU ePress CSU ePress

Theses and Dissertations Student Publications

5-2015

Using Unrestricted Mobile Sensors to Infer Tapped and Traced Using Unrestricted Mobile Sensors to Infer Tapped and Traced

User Inputs User Inputs

Trang Duyen Nguyen

Follow this and additional works at: https://csuepress.columbusstate.edu/theses_dissertations

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Nguyen, Trang Duyen, "Using Unrestricted Mobile Sensors to Infer Tapped and Traced User Inputs" (2015).
Theses and Dissertations. 178.
https://csuepress.columbusstate.edu/theses_dissertations/178

This Thesis is brought to you for free and open access by the Student Publications at CSU ePress. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of CSU ePress.

https://csuepress.columbusstate.edu/
https://csuepress.columbusstate.edu/theses_dissertations
https://csuepress.columbusstate.edu/student
https://csuepress.columbusstate.edu/theses_dissertations?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
https://csuepress.columbusstate.edu/theses_dissertations/178?utm_source=csuepress.columbusstate.edu%2Ftheses_dissertations%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

www.manaraa.com

Columbus State University

The D. Abbott Turner College of Business

The Graduate Program in Applied Computer Science

Using Unrestricted Mobile Sensors to Infer Tapped and
Traced User Inputs

A Thesis in

Applied Computer Science

by

Trang Duyen Nguyen

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science

May 2015

©2015 by Trang Duyen Nguyen

www.manaraa.com

I have submitted this thesis in partial fulfillment of the requirements for the degree of
Master of Science

7
Date (y TrangMNguyen

We approve of the thesis of Trang Duyen Nguyen as presented here.

H&
Date Radhouane Chouchane, Ph.D.

Associate Professor,

Thesis Advisor

Date Yesem Peker, Ph.D.

Assistant Professor

Y)
p\ &9 To, r jr*i'Jpfc?

Dale Charles Turnhsa, Ph.D.

Senior Research Scientist at

Georgia Tech Research Institute

/4 /

Date Wayne Summers, Ph.D.

Distinguished Chairperson and

Professor of Computer Science

www.manaraa.com

Ill

ABSTRACT

As of January 2014, 58% of Americans over the age of 18 own a smart phone. Of

these smart phones, Android devices provide some security by requiring that third-party

application developers declare to users which components and features their applications

will access. However, many of the real-time environmental sensors on devices are

exempt from this requirement. We evaluate the possibility of exploiting this freedom to

discretely use these sensors and expand on previous work by developing an application

that can use the gyroscope and accelerometer to interpret what the user has written, even

if trace input is used. Trace input is an option available on Samsung's default keyboard as

well as in many popular third-party keyboard applications, such as Swype, SwiftKey,

TouchPal, and GO Keyboard. "Tracing" an input involves the user dragging from the first

letter of the intended word to the last letter without lifting his or her finger. The inclusion

of trace input in a key logger application increases the amount of personal information

that can be captured since users may choose to use the time saving trace-based input as

opposed to the traditional tapping-based input. In this work, we attempt to interpret user

input using accelerometer and gyroscope data given single letter tap and full word trace

inputs.

Keywords: mobile malware; key logger; mobile security; spyware; motion sensors;

Android

www.manaraa.com

IV

TABLE OF CONTENTS

ABSTRACT iii

LIST OF FIGURES vii

Chapter 1: Introduction 1

1.1 Current State of Android Key Loggers 2

1.2 Mobile Sensors and Their Impact on Privacy 3

1.3 Our Contributions 4

1.3.1 Interpretation of Tap Input 4

1.3.2 Interpretation of Trace Input 5

1.4 Thesis Organization 8

Chapter 2: Background 9

2.1 Sensors Found on Mobile Devices 9

2.1.1 Motion Sensor Coordinate System 10

2.1.2 Sensor Sensitivity and Sampling Rate 11

2.2 Related Works 11

2.2.1 Works Using Accelerometer Only 12

2.2.1.1 Owsuet al.'s ACCessory Application 12

2.2.1.2 Xu, Bai, and Zhu's TapLogger Application 12

2.2.2 Works Using Multiple Sensors 14

2.2.2.1 Cai and Chen's Application 14

www.manaraa.com

2.2.2.2 Miluzzo et al.'s TapPrints Application 15

2.2.2.3 Al-Haiqi et al.'s Application 16

Chapter 3: Interpretation of Tap Input 18

3.1 Our Verification Experiment 18

3.1.1 Motivation 18

3.1.2 Approach 18

3.1.2.1 Data Collection 19

3.1.2.2 Feature Selection and Extraction 23

3.1.2.3 Learning and Classification 24

3.1.3 Results and Discussion 27

Chapter 4: Interpretation of Trace Input 31

4.1 Pangram Experiment 31

4.1.1 Motivation 31

4.1.2 Approach 31

4.1.2.1 Data Collection 32

4.1.2.2 Feature Selection and Extraction 32

4.1.2.3 Learning and Classification 33

4.1.3 Results and Discussion 33

4.2 Common Word Experiment 36

4.2.1 Motivation 36

www.manaraa.com

VI

4.2.2 Approach 36

4.2.2.1 Data Collection 36

4.2.2.2 Feature Selection and Extraction 38

4.2.2.3 Learning and Classification 39

4.2.3 Results and Discussion 39

Chapter 5: Conclusion and Future Work 42

5.1 Impact of Classifier on Input Prediction 42

5.2 Directions for Future Work 45

Appendix: Classification Algorithms 46

A.l A:-Nearest Neighbor 47

A.2 Support Vector Machines 48

A.3 Random Forest 49

Bibliography 50

www.manaraa.com

VII

List of Figures

Figure 1.1: Growth in Malware Samples Detected 2

Figure 1.2: Tap Input Example 5

Figure 1.3: Trace Input Example 6

Figure 1.4: Input Interpretation Overview 7

Table 2.1: Examples of Mobile Sensors 10

Figure 2.1: Mobile Coordinate System 11

Table 2.2: Features Used in Current and Previous Works 13

Figure 3.1: Approach Overview 19

Figure 3.2: Raw Accelerometer Data for Taps 22

Figure 3.3: Raw Gyroscope Data for Taps 22

Figure 3.4: Test and Training Sets Used for Taps 25

Figure 3.5: Accuracies and Build Time for Tap Prediction 27

Figure 3.6: Confusion Matrix for Tap Prediction by Random Forest 28

Figure 4.1: Accuracies and Build Time for Pangram Trace Prediction 34

Figure 4.2: Confusion Matrix for Pangram Trace Prediction 35

www.manaraa.com

VIM

Figure 4.3: Words Used in the 110 Common Words Experiment 37

Figure 4.4: Accuracies and Build Time for 110 Common Words Trace Prediction 40

Figure 5.1: Comparison of Inference and Random Guessing (Cross-Validation) 43

Figure 5.2: Comparison of Inference and Random Guessing (Test/Training Set) 43

Figure 5.3: Comparison of Model Build Times (Cross-Validation) 44

Figure 5.4: Comparison of Model Build Times (Test/Training Set) 44

Figure A.l: Overview of Data Classification 46

Figure A.2: Example of k-NN 47

Figure A.3: Example of a Decision Tree 49

www.manaraa.com

Chapter 1

Introduction

According to McAfee, approximately half of all adults in the United States had

personal data of some sort exposed in 2014, primarily through website breaches, point-of-

sale theft, and falling victim to malicious software and social engineering [1]. Although

there are some types of personal information that users may not be opposed to being

collected (such as their application preferences), exposure of a user's passwords, credit

card numbers, and other identifying information can have negative consequences for the

user. Malware and in particular spyware, which is a type of malware that focuses on

covertly gathering information, can be used to acquire these kinds of sensitive personal

information and pose a potential risk for organizations that allow for the "bring your own

device" policy [2].

The number of malware samples has been growing and their targets have been

changing:

• there was a 112% increase from 2013 to 2014 raising the total number to

over 5 million samples detected by McAfee as seen Figure 1.1 [1]

• there was a 75% increase in Android malware encounters in the US from

2013 to 2014 [3]

• the majority of new threat families, 275 out of the 277, found by F-Secure

in the first quarter of 2014 specifically targeted Android devices [4]

www.manaraa.com

NEW MOBILE MALWARE

900.000

800,000

700,000

600.000

500.000

400.000

300,000

200.000

100.000

0 I
01 Q2 Q3 Q4 01

2012
02 03 04

2013
01

2014

tourc* U«l« Lrtn. ?01«

Figure 1.1: The number of new malware samples detected each quarter by McAfee [5].

1.1 Current State of Android Key Loggers

Surprisingly, while the portion of malware that perform activities to spy on users

has increased from 12% to 28% between 2012 and 2013 and commercially marketed

spyware for monitoring children's, a spouse's, or employees' activities are available,

there has not been an Android key logger in the wild to our knowledge [6, 7]. A key

logger is a type of spyware that secretly records the keys pressed by a user on a keyboard.

The lack of an Android specific key logger is potentially due to the strict

restricted access allowed to applications on the Android system, which enables only the

application view that is in focus to intercept keystrokes [8], Although there are "key

logger-like'" malware applications, such as MisoSMS and Andr/FakeKRB-H, which can

www.manaraa.com

mm

gain access to user inputted text (as well as received text) in SMS messages by

circumventing Android security, we do not consider these applications in this study

because they are restricted in types of input they can recover [9, 10]. For example, neither

of the apps mentioned could intercept a password entered into a website viewed on a

mobile browser.

Although it is difficult for malware to get direct access to user input, it may be

possible to perform indirect key logging on Android devices. The wide range of available

sensors on Android systems allows developers to create applications that enhance a user's

experience when using mobile devices. However, these sensors have the potential to be

used as an attack vector for spyware because access to mobile sensors is not restricted by

Android's permission system. This system provides some security for a device by

allowing only applications with explicit permission from the user to access certain

restricted resources. Two examples of restricted resources are the device's camera and

microphone; these restrictions help prevent applications from photographing or recording

the user without his or her knowledge, since most would consider these actions to be a

breach in personal privacy.

1.2 Mobile Sensors and Their Impact on Privacy

Sensor data has the potential to be used to collect information about users that

may be considered private, albeit not as directly as a photograph or voice recording.

There are multiple works that demonstrate this potential misuse of sensors.

www.manaraa.com

• Mobile accelerometer used to spy on PC keyboard: Work by

Marquardt, et al. indicated that the accelerometer readings taken from a

smartphone placed on the same desk as a personal computer keyboard can

be sufficient to recover the typed text with rates up to 80% [11].

• Accelerometer readings used as smartphone fingerprint: A recent

study suggests that accelerometer data could be used to identify different

individual devices in the same way that a fingerprint can be used to

identify individuals [12]. This identification is based on the differences in

accelerometer readings across devices for the same stimuli and could

allow a user and their application usage to be tracked.

Whether the data comes from a nearby keyboard or a device's own screen, the

ability to recover user entered text puts the user's passwords and other private

information at risk. Because motion sensors on Android devices are not restricted and do

not require the user's permission, the user could download and use applications that

collect this data without ever knowing. This makes these unrestricted sensors a potential

side channel that could be exploited in an Android key logging malware.

1.3 Our Contributions

1.1.1 Interpretation of Tap Input

Several studies have demonstrated the potential for sensor data to be used to

interpret text that is entered using a mobile device (see Section 2.2). A common feature

of these past works is that input was assumed to be entered one letter at a time by tapping

www.manaraa.com

XBI ■

Figure 1.2: An example of a tapped input, in this case "hello". Each letter must be tapped

individually and one-at-a-time.

on the screen of the device. An example of tap input is demonstrated in Figure 1.2.

Because tap input has been a focus of previous work, the first phase of our work is to

verify that our model is able to reasonably interpret tap inputs. However, the default

software keyboards found on Samsung and Nexus devices as well as third-party keyboard

applications, such as Swype, SwiftKey, TouchPal, and GO Keyboard, also have the

option for users to enter text using a trace. This new type of input is the focus of the

second phase of our work.

1.1.2 Interpretation of Trace Input

Trace input involves the user dragging from the first letter of the intended word to

the last letter without lifting his or her finger, as shown in Figure 1.3. Unlike tap input

which can only be a single letter, a trace input is always a word and must contain at least

two letters. It is realistic to assume that while some users do only use the tap style of

www.manaraa.com

Figure 1.3: An example of a trace input, in this case "hello". Tracing an input requires that a user

drag their finger to each letter in the word without lifting their finger. The blue path represents the

finger movement needed to input this word.

inputting words into their devices, some users will also choose to use the trace style of

input that has been made available by popular keyboard applications. For this reason, in

the second phase of our work we evaluated the feasibility of interpreting trace input using

a mobile device's motion sensors, which was not previously done in past works.

As can be seen in Figure 1.4, both tap and trace input (letters and words) are

handled similarly throughout our work in that 1) the motion data must be collected while

the user taps or traces, 2) characteristics (also known as features) about each tap or trace

must be calculated and stored, and 3) these characteristics are used by a classification

algorithm that has been trained on sample words and letters to recreate the original word

or letter from the motion data.

www.manaraa.com

User's Phone

App Collects Raw
Motion Data

While User Types

Attacker's Computer

Feature Extraction
For Each Letter Or

Word

Trained Classifiers
Guess the Letter or

Word

1 Successful Guess

Bad Guy
Can Read

Private Data

Figure 1.4: This figure gives an overview of how tap and trace inputs are interpreted in our work.

Motion sensor data collection occurs in the user's device and processing and interpretation takes

place on the attacker's computer. The differences in how tap and trace inputs are handled occur in

how features are calculated for letters versus words.

Our main contributions with this thesis are:

1. An evaluation of whether the use of motion sensor data collected from the

accelerometer and gyroscope is sufficient to infer user entered text when trace

input is used. Our results using a pangram and common words as input showed 6

to 47 times improvement over random guessing, depending on the number of

words tested. This suggests that motion sensors do contribute to data leakage.

2. An evaluation of the impact of using different classification algorithms on the

accuracy and speed of the text inference. Our results showed that Random Forest

and Support Vector Machine (SVM) classifiers consistently provided the best

predictions, although SVM also required the most time. At a greater number of

www.manaraa.com

words, SVM outperformed Random Forest, potentially rendering the extra time

needed for SVM acceptable.

3. Our suggestions for further work. These recommendations include experiments

with realistic mixed tap and trace input, input from multiple users, and using

training data from one user and test data from another.

1.4 Thesis Organization

This thesis was divided into two separate phases. In the first phase, classification

was performed for individual letters entered using tap input. In the second phase,

classification was performed for only trace inputted words. Chapter 2 contains the

background for this thesis work, including an overview of the sensor available on

Android devices and an overview of similar work published by other authors. Chapter 3

corresponds to the first phase and contains the details of our tap input only experimental

setup and results. Chapter 4 describes the second phase of this thesis and is broken into

two main trace input experiments. Chapter 5 concludes this work and our suggestions for

further work. There is also an appendix with elementary information about the

classification algorithms used.

www.manaraa.com

Chapter 2

Background

2.1 Sensors Found on Mobile Devices

The Android framework provides support for many different types of sensors that

can collect information about motion, position, or the environment, thereby allowing for

the development of applications that can respond to the user and his or her environment.

These sensors may be one of the following:

• Hardware-based sensors: physical components in the device that gather their

data by direct measurement

• Software-based sensors: use one or more hardware-based sensors to generate

their data [13]

Although there are many sensors available, the number and type of sensors

present on a device depend on the device itself and the Android version of the device. For

example, of the 83 devices analyzed by Teardown.com, 94% contained an accelerometer

and 71% contained a gyroscope; other sensors, such as thermometers and barometers, are

less common [13, 14]. Examples of mobile sensors and their type can be found in Table

2.1.

www.manaraa.com

mam

10

Sensors
Hardware-based Hardware or Software-based Software-based

Accelerometers Gravity detection Orientation sensor*
Thermometers Linear acceleration
Gyroscopes Rotational vector measurement
Light sensors

Magnetic field sensors
Barometers

Proximity sensors
Humidity sensors

Table 2.1: Examples of sensors that can be found on mobile phones. *Deprecated in API level 8

2.1.1 Motion Sensor Coordinate System

A 3-axis coordinate system, as shown for both smartphones and tablets in Figure

2.1, is used by motion and position sensors such as the accelerometer, gyroscope, and

gravity sensor. This coordinate system does not change as the device is moved, even if

the screen orientation of the device changes. With respect to this coordinate system, the

accelerometer is the sensor that records the linear acceleration along each axis

as meters I allowing it to register shaking or tilting of the device. The

gyroscope is the sensor that measures the rotational speed around each axis of this

coordinate system in ra nVcpCond' wmcn translates to turning or spinning of the

devices.

www.manaraa.com

11

Figure 2.1: The 3-axis coordinate system used by Android device sensors. Source Math Works [15].

2.1.2 Sensor Sensitivity and Sampling Rate

While the sensitivity and sampling ability of a sensor depends on the device in

question, it is possible to use methods provided in the Android API to determine the

minimum sampling delay available and to set the desired sampling rate to a specific range

depending on the application's purpose. These include normal delay, delay suitable for

gaming, delay for a user interface, and the least delay possible for the sensor [13].

2.2 Related Works

Previous works have shown that data collected using the unrestricted motion

sensors in mobile devices can be used for inferring either a user's keystrokes or the

location on the device's screen that was tapped. These works were able to achieve their

goals using different classification algorithms and feature combinations. These

differences are enumerated in the following two sections, in which the works are

www.manaraa.com

12

separated depending on whether they (1) used only accelerometer data or (2) used one or

more sensors to collect data.

2.2.1 Works Using Accelerometer Only

2.2.1.1 Owsu et al.'s ACCessory Application

In [16], an Android application called ACCessory was created with the aim to

infer which area of the screen was tapped as well as the characters inputted using taps.

This work used the random forest algorithm for classification, which was trained using 46

features. The features used were extracted from the three axis component and the

magnitude of acceleration, and can be seen in Table 2.2.

The model presented was able to correctly infer 6 out of 99 passwords consisting

of six characters each in a median of 4.5 trials.

2.2.1.2 Xu, Bai, and Zhu's TapLogger Application

The application known as TapLogger was developed by another set of researchers

[17]. In this work, the goal was to evaluate if sensor data provided enough information to

distinguish between taps on the number pad, which would allow for such activities as

cracking a user's lock screen pin or determining credit card numbers entered onto the

device. The 2-norm acceleration vector from the accelerometer data was used to describe

the tap pattern. The orientation sensor (now depreciated) was also used in their work to

infer the position of the tap. This model was able to correctly predict screen lock

www.manaraa.com

13

Owsu [16] Cai and Chen [18] Miluzzo [19] Al-Haiqi [20] Our Work

<u
3
%

RMS
RMSE

MMIn
AASbS

local peaks •
= local crests

TTP
TTC
RCR
SMA

Total time
= samples

Segment length
APeak Time
Peak interval

Attenuation rate
Vertex angles

CPI •
Moments •
Skewness
Kurtosis
1-norm •

Infinity norm •
Forbenius norm •

FFT •
Mean

Median
StD •

Table 2.2: Features used by previous works. These features include root mean square value (RMS),

root mean square error (RMSE), average sample-by-sample change (AASbS), average time from a

sample to a peak (TTP), average time from a sample to a crest (TTC), RMS cress rate (RCR), cubic

spline interpolation (CPI), Fast Fourier Transform (FFT), and standard deviation (StD). Note that

some of these features are extracted for each axis of multiple sensors, so the total number of features

used in a work does not equal the number of features marked in this table. For example, Miluzzo et

al. used a total of 273 features in their work.

www.manaraa.com

14

passwords with a four character length with an average coverage rate of 40% and eight

character length passwords with a rate of 45% [17].

2.2.2 Works Using Multiple Sensors

2.2.2.1 Cai and Chen's Application

In Cai and Chen's paper, the impacts of different classification algorithms and

features, device types, key sets (such as alphabet-only keyboards compared to number-

only keyboards), the device's screen orientation, and the keyboard layout on the

performance tap-input inference based off sensor data were evaluated [18]. This work's

pre-processing on the raw sensor data included de-jittering, low-pass filtering, calibration

(such as removing the influence of gravity), and segmentation (separate each of the

keystrokes). The authors also chose not to consider the z-axis component for either the

accelerometer or the gyroscope. They also state that for motion data, magnitude is a poor

feature. They instead chose to use the six features shown in Figure 2.2.

This work also included another feature that the authors calculated as shown in

Equation 1 below.

hi = arctan(-i) x 180/TT (1)

The two classification algorithms compared in this work were

1) Dynamic Time Warping

2) Support Vector Machines (SVM)

www.manaraa.com

15

The authors concluded that both algorithms performed similarly and were

effective for inferring user's tap-based input, although accuracy was affected by keyboard

and device differences (for example, the accuracy increases when a device's screen is in

the landscape orientation). The authors also noted that gyroscope data provided more

accurate inference than accelerometer data [18].

2.2.2.2 Miluzzo et al.'s TapPrints Application

The framework presented in [19], known as TapPrints, uses a combination of

accelerometer and gyroscope data to infer user input for devices with different operating

systems (iOS and Android) and for both smartphones and tablets. In this work, 273

features were extracted from the time and frequency domains of the raw data. The

authors used cubic spline interpolation to ensure that the number of sensor readings used

for each tap were the same before feature extraction. The time domain features they chose

to use were divided into column features (which used components of each sensor axis)

and matrix features (which used the correlation between the three-axis sensor vectors).

The column features included cubic spline interpolation, moments, the minimum

and maximum values, skewness, and kurtosis; matrix features included the 1-norm, the

Infinity norm, and the Frobenius norm. Other features were also extracted from processed

data. For the frequency domain features, they performed a Fast Fourier Transform (FFT)

on each of the sensor axis components and computed features from the power spectrum

of the FFT values. These features are summarized in Table 2.2.

www.manaraa.com

16

For classification, TapPrints used an ensemble classification approach in an

attempt to increase the accuracy and robustness of their input predictions. The authors

chose to use the following types of multi-class classifiers:

1) k-nearest neighbor

2) multinomial logistic regressions

3) Support Vector Machines (both linear and with radial basis function

kernels)

4) random forests

5) bagged decision trees.

This model was able to achieve an average of above 50% accuracy for inferring

sequentially tapped-inputted letters in landscape orientation and 27% when inferring a

pangram while in portrait orientation [19].

2.2.2.3 AI-Haiqi et al.'s Application

In a work comparing the effectiveness of different sensors and sensor

combinations by Al-Haiqi et al., 18 features per sensor from the time domain were

chosen [20]. These features can be seen in Table 2.2.

The authors state that no set of features used in previous research for keystroke

classification appears to clearly outperform the others used. For classification, the authors

of this work determined that the Bagging classifier used with a Functional Trees based

model performed best for their dataset. The taps used were estimated to be approximately

80ms long, which, with the sampling rates used, resulted in five sensor samples for each

www.manaraa.com

17

tap. The authors concluded that the gyroscope data was more effective for tapped key

inference than data collected using the linear accelerometer, the rotational vector sensor,

or a combination of the accelerometer and the magnetic field sensor [20].

www.manaraa.com

18

Chapter 3

Interpretation of Tap Input

In this chapter, we describe our method for inferring user text from accelerometer

and gyroscope readings taken while the user taps each letter on a device. We describe our

experimental approach and provide the details of our data collection, feature selection,

feature extraction, and classification algorithm selection. We end this chapter with an

evaluation of our results.

3.1 Our Verification Experiment

3.1.1 Motivation

The aim of the first phase of this thesis was to confirm that our model was capable

of producing tap-input inference accuracy similar to those seen in previous works before

proceeding with the novel inference of trace-input. We also wanted to determine if there

was a significant difference in performance when using other classifications algorithms

that previously were not compared, which would allow us to potentially optimize text

inference.

3.1.2 Approach

The first step of our approach was to create an Android application that could be

used to collect gyroscope and accelerometer data on a device while a user entered text.

www.manaraa.com

19

d
Bad Guy's Labeled Data

Captures Sent to bad

motion data J 9UVS PC

Raw Data
(CSV files)

User types on

infected device

Processes data using a

custom feature

extraction program

(ARFF files)

WEKA
111. Unir*i>K>

Machine learning

software predicts

the user's input

Figure 3.1: The overview of our approach. Data flows from the "infected" mobile device to a PC,

where processing and classification occurs.

Our application was responsible for outputting the comma-separated values (CSV) files

containing the sensor data as well as the end time of each key tap. These files were then

transferred from the device to a computer where all processing, learning, and prediction

were performed. We then developed a program to extract our selected features from these

data CSV files and output feature CSV files. These feature CSV files could then be

converted to attribute-relation file format (ARFF) files. The ARFF files were then used

with the machine learning software Weka, which we used for classification learning and

prediction. This approach is also presented visually in Figure 3.1.

3.1.2.1 Data Collection

Two devices were initially used in this experiment:

www.manaraa.com

20

1) a smart phone (the Nexus 5)

2) a tablet (the Galaxy Tab Pro 8.4)

We assume that the user holds the device in portrait orientation with his or her left

hand and uses his or her right index figure for input. When using the tablet, the left hand

was placed at the bottom left corner of the device.

As mentioned, we developed a custom application for the Android platform to

collect the sensor data. This application brings up the keyboard and allows a user to type

into a text field. While open, the collector application produces three files corresponding

to the following:

• input completion timing,

• the gyroscope readings

• the accelerometer readings

For the tap's completion time, we used a "TextWatcher" and a

"TextChangedListener". Both the gyroscope and the accelerometer were set to use the

lowest delay possible ("SENSOR_DELAY_FASTEST"), which for both sensors was

approximately 5 microseconds. This collection application requires

"WRITEEXTERNALSTORAGE" permission because the created files are stored

locally in a user accessible folder. This is for our convenience and would likely not be

present in an application aiming for attack. After data collection process was complete,

we retrieved the data files for off-line processing.

Raw accelerometer and gyroscope data was collected on the tablet device for each

letter of the alphabet entered using tap-style input. This was done with 50 repetitions per

www.manaraa.com

21

letter. Another 50 repetitions per letter were also collected approximately one month later

for comparison. For the smart phone, data for only the first two letters was collected,

again with 50 repetitions. We did not complete the data collection for the smartphone at

this time point because of the difficulty with retrieving the data files from the device,

which made the process much more time consuming than on the tablet. This is a known

issue with the Android MTP (Media Transfer Protocol) and does not affect devices that

use USB Mass Storage [21]. We therefore excluded the Nexus 5 from all further

experiments.

For the tap-input collected, individual tap events can be easily recognized in both

the raw accelerometer and gyroscope data, as shown in Figure 3.2 and Figure 3.3. This is

particularly true in the z-axis of the accelerometer sensor readings and the x-axis and y-

axis sensor readings of the gyroscope. Note that the end time of each tap in these figures

is denoted by a vertical line.

www.manaraa.com

22

12

-2
N %°% # # ^ # ^ A°% #" <£" # # & ^ ^ <P <$> <\& <£- <$> #

"V' V V V "V' V V V V V V

Record Number

Figure 3.2: Raw accelerometer data showing seven tap-input letters. The end of each tap is denoted

by a vertical bar.

-0.5

0.5

Q 0 r » *M^* f r ™
a -° 5

£ 0.5

-0.5
1 101 201 301 401 501 601 701 801 901 1001110112011301

Record Number

• x-axis

• y-axis

• z-axis

Figure 3.3: Raw gyroscope data showing six tap-input letters. The end of each tap is denoted by a

vertical bar.

www.manaraa.com

23

3.1.2.2 Feature Selection and Extraction

The size of the feature set used in previous tap interpretation related work varied

from 7 features to 273 features [18, 19]. The work done in [19] was able to achieve good

results with their chosen 273- feature set; however Al-Haiqi et al. noted in their work that

currently there is no evidence that any of the feature sets used previously is better suited

for inference than the others [20]. In our work, we chose to use a feature set consisting of

the mean, median, minimum and maximum, skewness, and kurtosis of each sensor axis

for a total of 36 features. A comparison of features used in various works can be seen in

Chapter 2 in Table 2.2.

The feature set used in our study is very similar to the one used in [20], with the

exception that we did not use the standard deviation and they did not use kurtosis. The

minimum and maximum were also used in [16, 19] and skewness and kurtosis were used

in [19]. Altogether, each chosen feature was used in at least one of the previous works, as

shown in Table 2.2. Our feature set also has the benefit of being computationally efficient

in that it reduces the amount of time needed to extract the features from raw data. This

simplicity would be ideal for an attacker working with a very large set of data because a

complex feature set may make feature extraction prohibitively expensive.

The values of the mean, median, min/max, skewness, and kurtosis were calculated

for each axis component for both sensors using a custom program we developed, which

1 Kurtosis measures the relative height and sharpness of a peak of the data. High kurtosis
values correspond to high and sharp peaks, whereas low values indicate less distinctive
peaks. The skewness measurement indicates whether the data is skewed to the left or to
the right (the asymmetry). Positive skewness means the data is skewed to the right,
negative skewness means it is skewed left, and a skewness value of zero indicates a
symmetrical dataset [33].

www.manaraa.com

24

used the DescriptiveStatistics API available from Apache [22]. This program takes as

input two CSV files, one containing the raw accelerometer and gyroscope data and one

containing the input end times, and outputs one CSV file containing all the extracted

features.

Our feature extraction program assumed that each tap lasted for 200ms; this

resulted in 42 records being used for feature extraction for each tap for all letters [17].

The CSV files containing the extracted features were also labeled with the corresponding

letter the tap represented.

3.1.2.3 Learning and Classification

Before our labeled feature data could be used for classification, the CSV files

were first converted into ARFF files using an online converter [23]. All classification

learning and prediction was then performed using Weka version 3.6.10 [24].

We elected to compare the performance with regard to classification accuracy and

the time required to build the classification model of the following classification

algorithms:

• ^-Nearest Neighbor (A-NN)

• Support Vector Machine (SVM)

• Random Forest

www.manaraa.com

BBS

20%

BBBD ^
260 taps

Test Set

1040 taps

Training Set

EBBD

1290 taps

Training Set

BB3

All the
same
letter

10
taps

Test Set

2600 taps

Training Set

25

same
letter and

newly
collected

4
30 taps

Test Set

Figure 3.4: The breakdowns of the three different test and training sets used. Note that the first two

sets used only the original 1300 taps collected.

These classifiers were chosen because random forest was used in [16], SVM was used in

[18], and all three were part of a large ensemble classifier in [19], but their performance

was not previously compared. The &-NN algorithm was chosen for its relative simplicity,

which allowed us to compare a lower complexity algorithm (&-NN) with a higher

complexity algorithm (SVM).

The A>NN and SVM algorithms correspond to the instance-based k (IBK) and

sequential minimal optimization (SMO) classifiers in Weka, respectively. We used the

default parameters available in Weka for all classification algorithms through our

experiments. We made the decision not to optimize for two reasons: 1) to aid in

repeatability and 2) because optimization for one user's input style may not be

generalizable to other users. For &-NN, the default settings correspond to k = 1, with no

distance weighting, and Euclidean distance function. The SVM had a polynomial kernel

www.manaraa.com

26

shown in Equation 2 below, with a cache size of 250007 and p = 1. The random forest

classifier used had no maximum depth and contained 10 trees.

K(x, y) = <x, y>p or K(x, y) = (<x, y> + 1)p (2)

We performed a 10-fold cross-validation for each of these classifiers, with each of

the classification algorithms trained using both the 1300 tap data set (50 taps per letter)

and the 2600 tap data set (the original tap plus the taps collected a month later).

We also performed multiple experiments with different test and training sets.

These are described below and can be seen in Figure 3.4.

• A 20/80 split test and training set: We tested the classification

algorithms by splitting our 1300 tap data set into a training set and a

testing set. The testing set consisted of 20% (260 taps) from the original

set, and the training set contained the remaining instances (1060 taps).

• A 10 instance test set per letter: We split individual letters into

testing/training sets, such that the test set contained 10 instances of the

letter of interest and the training set contained 1290 taps (the original data

set minus the test set).

• A 30 new instance test set per letter with the doubled training set: We

collected 30 new taps of individual letters and used them as a test set for

the classifiers and the doubled 2600 tap data set as the training set.

www.manaraa.com

MBammBBammmamm

27

10-Fold Cross-Validation Test Set

1-NN Random Forest SVM 1-NN Random Forest SVM

Correctly Classified 74.69% 83.23% 82% 71.92% 78.85% 80.38%

Relative Absolute Error 27.92% 37.10% 96.10% 30.91% 38.74% 96.06%

Model Build Time (sec) 0 0.29 1.61 0 0.25 1.72

10-Fold Cross-Validation w/ Double

Data

1-NN Random Forest SVM

Correctly Classified 77.92% 86.50% 62.77%

Relative Absolute Error 23.81% 32.72% 96.38%

Model Build Time (sec) 0 0.71 4.34

Figure 3.5: Accuracies and time requirements of the three classification algorithms we compared (k-

nearest neighbor, support vector machine, and random forest).

3.1.3 Results and Discussion

For the 10-fold cross-validation experiments with the 1300 tap data set, the

classification accuracies in terms of the percentage of correctly classified instances

achieved using the SVM and the random forest were very similar, with the 1-NN being

less accurate than both. The k-NN classifier was approximately 8% less accurate than the

other two classifiers; however, it showed the smallest relative absolute error of the three

classifiers. Doubling the dataset size resulted in only a slight increase in accuracy for k-

NN and random forest classifiers. However, the accuracy of the SVM classifier decreased

by almost 20%. While these results could suggest that collecting a large number of

labelled tap inputs recorded from a single user may be unnecessary, this may also be an

artifact of combining data collected a month apart, indicating a time sensitivity issue.

When we split the data set into an 80/20 percent split training and test set, both

SVM and random forest classifiers again performed better than k-NN, although in this

www.manaraa.com

I

z
Y

X

w-
v -
0

T

S

R -

Q
P -

0

I

H-

l

K-

J -

I

H

F "

E

D

C

B "

o B

B o

n 4
*

B o B
c o

a *
D * I
§ *

*
a S ♦ me

© « a D Q

0 D

D c ■ V *
e #
* n a a

s * 0 §
B

OH n

D
IS
D

■
IS

a
o

i—i—i—!?—r—i—r—I—i—i—i—i—i—i—w—i—i—i—i—i—i—\—i—i—i
ACEGIKMOQ SUW
BDFHJLMPRTVXZ

28

Letter Inputted

Figure 3.6: Letter confusion seen during the 10-fold cross-validation of the random forest classifier.

evaluation SVM outperformed the random forest classifier by a small amount. The k-NN

classifier again showed the smallest relative absolute error of the three. These accuracies,

as well as the relative absolute error and time each classifier took to build, can be seen in

Figure 3.5.

Accuracy when the test set consisted of 10 instances of one letter and the training

set consisted of the 1290 remaining taps varied depending on the letter. For example, for

the letter A both the SVM and random forest classifiers were able to correctly predict all

10 instances and the k-NN predicted 9 out of 10 correctly. As can be seen in the

confusion matrix (which shows both the correct and incorrect predictions made by a

classifier) of the random forest classifier (Figure 3.6), A was also not misclassified as any

other letter during the cross-validation experiment so this result was not unexpected.

www.manaraa.com

29

Similarly, letters that were seen as frequently misclassified during the cross-validation

experiment, such as the letter T, had comparatively low accuracy. The random forest and

k-NN classifiers were able to predict correctly 7 out of 10 of the instances for the letter T,

but the SVM predicted only 2 out of 10.

As expected, letters close to each other on the keyboard do appear to be confused

with each other more so than with other letters (such as, F and G or O and L), as seen in

Figure 3.4. However, this was not always the case. For example, Z was confused with Y

almost as often as it was with S when using the random forest classification algorithm,

even though Z is spatially close to S but not Y. This same confusion was seen using the

other classifiers as well but to a lesser degree.

While the classifiers all performed well in our other tests, when we introduced

newly collected tap data (30 instances) as the test set and used the doubled data set for

training, all of the classifiers achieved around 65% classification accuracy (66.7% by

SVM and random forest and 63.3% by k-NN; data not shown). As previously mentioned,

we believe this could be due to differences in the feature values over time because the

taps used to double the data set were collected closer to time to the new test set taps than

the original data set taps were. We have not yet found the cause of this difference, though

a change in the feature set may allow for stored labelled tap data to be used for more long

term interpretation.

Aside from the time-sensitive nature of our current feature set, all three classifiers

were able to infer the letters represented by the tap input with a much greater accuracy

than the 1/26 (3.85%) accuracy expected for randomly guessing English letters. For the

results using the 1300 tap data set, the accuracy of tap classification was 18-20 times

www.manaraa.com

ran mmmmmmmmmmmm

30

better than random guessing. Our results are similar to those found in the literature; for

example, in [19] a mean accuracy of 65.11% was achieved when taps were collected on a

tablet in landscape orientation. As expected, our results were better than those that were

obtained using only the gyroscope, with only 30-33% accuracy achieved in [18] for

tapped letters collected on a tablet in landscape orientation. Although higher accuracies

of over 90% were achieved in [8], this work evaluated only the inference of tapped

numbers.

In terms of the performance of the classification algorithms, SVM and random

forest consistently performed slightly better than k-NN, although k-NN always showed

the least relative absolute error. While both the random forest and k-NN built quickly, the

SVM classifier was comparatively sluggish, taking over five times longer to build than

the random forest in all tests. This difference in computation time lead us to conclude that

random forest and k-NN are better suited for this type of inference.

www.manaraa.com

31

Chapter 4

Interpretation of Trace Input

In this chapter, we describe our method for inferring user text from accelerometer

and gyroscope readings taken while the user traces whole words on a device. We

performed two experiments for trace input: one using pangrams as input and one using

common English words. In this chapter we explain our approach and detail our data

collection, feature selection and extraction, classification algorithm selection and

learning, and evaluate our results.

4.1 Pangram Experiment

4.1.1 Motivation

We chose to perform an experiment using a pangram as the input to ensure that all

letters of the alphabet were included. Not all letters were inferred with the same accuracy

during our tap experiment, so we wanted to use words that covered all of the keyboard

locations.

4.1.2 Approach

The same approach was used for interpreting trace-input as was used for tap-input

(shown in Figure 3.1), with a few modifications that are enumerated in Section 4.1.2.1.

www.manaraa.com

mmammaiaiaBBiamanam

32

We used our application to output CSV files containing the sensor data and the end time

of each word trace. These files were transferred from the device to a computer, where all

processing, learning, and prediction was performed. Our selected features were computed

from these data CSV files using our custom feature extraction application and contained

in the outputted feature CSV files. These feature CSV files could then be converted to

ARFF files and used with the classification algorithms to infer the inputted words.

4.1.2.1 Data Collection

Trace input data was collected using the same mobile device, screen orientation, and

custom Android application and by the same user as the tap input data. Raw

accelerometer and gyroscope data was collected for the trace of each word in the

pangram "The quick brown fox jumps over the lazy dog." with 50 repetitions per word.

Because our collection application used a "TexfWatcher" and a "TextChangedListener"

to record the end time of each trace, time entries for the space added automatically by the

Samsung after a word is traced were also in the outputted CSV file and had to be

removed manually before feature extraction.

4.1.2.2 Feature Selection and Extraction

The feature set we used to infer the collected trace data were the same as those

used for tap input inference: the mean, median, minimum and maximum, skewness, and

kurtosis values of each sensor axis (also shown in Figure 2.2). We made this decision to

see if the same feature set could be used to interpret both tap and trace input.

www.manaraa.com

33

We modified our feature extraction program with the assumption that each word

took 1 second to trace. This choice came from the original claims of the Swype keyboard,

the first that used trace input, which stated that a user could input 55 words per minute

[25]. Because the time a user begins the trace is not available to use, this second is

collected starting from the end of the trace and goes backwards. As a result, 210 records

are used to compute the features of every traced word regardless of whether the trace was

longer or shorter than 1 second. As with the tap data, the feature-containing CSV files

were converted to ARFF files for classification and learning.

4.1.2.3 Learning and Classification

The SVM, k-NN, and random forest classification algorithms were used to

determine their potential for inferring words inputted using a trace. Their inference

performance and required computation times were also compared.

A 10-fold cross-validation was performed with each classifier trained using the

full 400 trace data set. We also evaluated the classifiers by splitting the data set into a test

set containing 20% of the original data set (40 traces) and a training set (360 traces).

4.1.3 Results and Discussion

Classifiers using any of the three classification algorithms were able to infer the

inputted words with better accuracy than randomly guessing one of the eight words

(12.5%). The SVM had the highest percentage of correctly identified words (89.75%),

followed by the random forest (84.75%), and then the k-NN classifier (79%) for the 10-

www.manaraa.com

BBBfflfBIWMIUIlllHIIIIIlliJliHHBWMMBiHIIlUytlJlHIIgyB

10-Fold Cross-Validation

ifc-NN Random Forest SVM

Correctly Classified 79.00% 84.75% 89.75%

Relative Absolute Error 25.65% 32.86% 86.29%

Model Build Time (sec) 0 0.22 0.68

Test Set

A:-NN Random Forest SVM

Correctly Classified 75.00% 90.00% 85.00%

Relative Absolute Error 30.05% 33.64% 86.13%

Model Build Time (sec) 0 0.23 0."5

Figure 4.1: Accuracies and time requirements of the three classification algorithms (k-nearest

neighbor, support vector machine, and random forest) for trace input.

34

fold cross-validation. As in the results for the tap input, the smallest relative absolute

error was seen with the k-NN classifier.

When compared using the split test and training sets, the random forest performed

best in terms of accuracy (90%), followed by the SVM (85%) and the k-NN (75%)

classifiers. The random forest and k-NN classifiers showed similar relative absolute error;

both were much lower than SVM. As seen in the tap interpretation experiments, SVM

took several times longer to build than the random forest classifier. These results and

those from the cross-validation are summarized in Figure 4.1. Taking into account both

its inference accuracy and build time, the random forest algorithm appears to be the best

choice out of the three for trace-inputted word interpretation. However, we found it

interesting that all three algorithms were able to identify the traces. It should be noted, of

www.manaraa.com

nmwuutHimum1 mnssBBR

35

*-NN SVM Random Forest

Word Confused with Confused with Confused with

quick over/fox/dog dog lazy

the jumps jumps jumps

over quick lazy quick

lazy fox brown fox

jumps the the the

fox dog dog lazy

dog fox over over

brown lazy lazy lazy

Figure 4.2: Letter confusion seen during the 10-fold cross-validation of all three classifiers for trace

input.

course, that while the inference accuracy is high, these results demonstrate only 6-7 times

improvement over random guessing because of the low number of words tested.

When comparing the confusion matrices for the cross-validation trials, it can be

seen that misclassification is not as easy to interpret as with the tap inputs. The most

frequently confused word for each trace with each classifier is shown in Figure 4.2. Note

that with k-NN, "quick" was confused with three other words with the same frequency.

Length of the word does not appear to contribute to the confusion, which is expected

because we treated each trace as the same length when extracting the features.

Interestingly, only "jumps" and "the" were misclassified with each other in both

directions; for example, "brown" was confused with "lazy" the most frequently with all

classifiers but "lazy" was not most often confused with "brown" in two of the three

classifiers. While we would expect the misclassification to be due to similarities in the

www.manaraa.com

mmmmmmammmmmimmBmiimBam^mmmmmmmmmmmm^Kmmmmmmmimim

36

motion of the trace pattern of each word, it is difficult to visualize these similarities. For

example, although both "the" and "jumps" end with the trace going to the left of the

keyboard, "the" is more centralized on the keyboard and the distance between the keys is

comparatively small. In contrast, "jumps" starts at the far right of the keyboard and ends

going down and left all the way from "P" to "S." Unlike with tap inference where a

misclassified letter is likely a letter spatially close on the keyboard, misclassification of

trace input appears to be much less intuitive.

4.2 Common Word Experiment

4.2.1 Motivation and Approach

The aim of this experiment was to determine if common, short words could be

inferred using sensor data when traced by a user. Because these words are considered

very common, using them as input allows us to determine how effective trace inference

would be for everyday text input. We also included a greater variety words in our data

set, again to be more representative of a user's realistic usage. For the approach, refer

back to Section 4.1.2.

4.2.2.1 Data Collection

Trace input data was collected using the same mobile device, screen orientation, and

custom Android application and by the same user as the tap input data. Raw

accelerometer and gyroscope data was collected for the trace of each of the 110 most

www.manaraa.com

1 the 31 or 59 know 87 work

2 be 32 an 60 take 88 first

3 to 33 will 61 people 89 well

4 of 34 my 62 into 90 way

5 and 35 one 63 year 91 even

7 in 36 all 64 your 92 new

8 that 37 would 65 good 93 want

9 have 38 there 66 some 94 because

11 it 39 their 67 could 95 any

12 for 40 what 68 them 96 these

13 not 41 so 69 see 97 give

14 on 42 up 70 other 98 day

15 with 43 out 71 than 99 most

16 he 44 if 72 then 100 us

17 as 45 about 73 now 2 person

18 you 46 who 74 look 6 thing

19 do 47 get 75 only 7 man

20 at 48 which 76 come 8 world

21 this 49 go 77 its 9 life
22 but 50 me 78 over 10 hand

23 his 51 when 79 think 11 part

24 by 52 make 80 also 12 child

25 from 53 can 81 back 13 eye

26 they 54 like 82 after 14 woman

27 we 55 time 83 use 15 place

28 say 56 no 84 two 17 week

29 her 57 just 85 how

30 she 58 him 86 our

37

Figure 4.3: The 110 words used as input for the "common words" trace experiment. The number

indicates how common the word is (lower is more common), according to the Oxford English

Dictionary [26]. Italicized words are from the list of most common content words.

www.manaraa.com

mBBmsaaimmammmmmBmmBBBBmamamm

38

common words, according to the Oxford English Dictionaries and shown in Figure 4.3,

with 50 repetitions per word [26]. Note that we excluded single letter words and included

some of the most common content words for a total of 110 words. Because our collection

application used a "TextWatcher" and a "TextChangedListener" to record the end time of

each trace, time entries for the space added automatically by the Samsung after a word is

traced were also in the outputted CSV file and had to be removed manually before feature

extraction.

4.2.2.2 Feature Selection and Extraction

As in the pangram experiment, the feature set we used to infer was the same as

the one used for tap input inference: the mean, median, minimum and maximum,

skewness, and kurtosis values of each sensor axis.

Unlike in the pangram experiment, we chose to assume that each word took 0.5

seconds to trace in our feature extraction program, rather than 1 second per trace. This

decision was made because of the nature of the words used as input; that is, many of the

words were short and contained only two to three characters (see Figure 4.3). Although

reducing the time assumed for each trace decreases the amount of information we can

collect from longer word traces, it also helps prevent more than one trace being included

in what we assume to be the features of only one trace. As a result, 105 records were used

to compute the features of every traced word regardless of whether the trace was longer

or shorter than 0.5 seconds. As in the tap and pangram experiment, the feature-containing

CSV files were converted to ARFF files for classification and learning.

www.manaraa.com

39

4.2.2.3 Learning and Classification

As in the other experiments, the SVM, k-NN, and random forest classification

algorithms were used to determine their potential for inferring words inputted using a

trace. Their inference performance and required computation times were also compared.

A 10-fold cross-validation was performed with each classifier trained using the

full 5500 trace data set. We also evaluated the classifiers by splitting the data set into a

test set containing 20% of the original data set (1100 traces) and a training set (4400

traces).

4.2.3 Results and Discussion

Although the classification accuracies of all three classification algorithms were

quite low, using the classifiers to infer the inputted words had significantly higher

accuracy than randomly guessing one of the 110 words (0.91%). As in the pangram

experiment, the SVM had the highest percentage of correctly identified words (43.58%),

followed by the random forest (37.27%), and then the k-NN classifier (27.29%) for the

10-fold cross-validation. The smallest relative absolute error was again seen with the k-

NN classifier, although all of the classifiers had greater than 70% error.

The results for the split test and training set runs were very similar to the cross-

validation. The SMV still performed best in terms of accuracy (41.09%), followed by the

random forest (32.64%) and the k-NN (25.36%) classifiers. The relative absolute error

was also still above 70% for all classifiers, with SVM having the highest and k-NN

www.manaraa.com

mmHHMMHIll WMUUIWfflMBHM'lWWIUlflUUlJUillHlJll.

40

10-Fold Cross-Validation

t-NN Random Forest SVM

Correctly Classified 27.29% 37.27% 43.58%

Relative Absolute Error 73.95% 80.90% 99.15%

Model Build Time (sec) 0 4.22 13.31

Test Set

fr-NN Random Forest SVM

Correctly Classified 25.36% 32.64% 41.09%

Relative Absolute Error 75.91% 82.99% 99.14%

Model Build Time (sec) 0 3.05 13.55

Figure 4.4: Accuracies and time requirements of the three classification algorithms compared (k-

nearest neighbor, support vector machine, and random forest).

having the lowest. As expected from the pangram experiment, the SVM took

approximately three times longer to build than the random forest classifier. These results

and those from the cross-validation are summarized in Figure 4.4. Although it is the

slowest of the classification algorithm examined, SVM allowed for an inference accuracy

that was over 6% higher than the accuracy obtained using the random forest algorithm.

Unlike with the pangram, where the random forest outperformed the SVM when using

the test set, the best accuracy was achieved using SVM in all cases. Because all

accuracies are below 50%, the benefit of increased accuracy when using SVM outweighs

its higher time requirements, making it the best choice in this experiment.

Although the inference accuracy was low, it should be noted that using the motion

sensor data was 28-47 times better than random guessing. This improvement was

achieved without any optimization or customization of the classification algorithms. By

www.manaraa.com

lWHIUMlllllMMllUymiMI.BHIJBlHIUUUUillllllJLII

41

simply changing the complexity factor used with the SVM algorithm from 1 to 2, the

inference accuracy was increased to 46.80% (10-fold cross-validation).

www.manaraa.com

msBBBmmmm

42

Chapter 5

Conclusion and Future Work

We have collected gyroscope and accelerometer data from an Android tablet

while a user inputs text and have demonstrated the potential for this data to be used to

infer the user text whether it was tapped or traced. Although our work is only in its early

stages, it adds to the evidence garnered by previous works that leaving a mobile device's

motion sensors unrestricted may be a threat to users' privacy. An attacker could

potentially modify a legitimate application to collect sensor data in the background with

the user's knowledge and use it to rebuild user text containing passwords or other

sensitive material regardless of whether the user's preference is for tapping letter-by-

letter or tracing full words. Due to the low battery consumption of the sensors, the ever

increasing data allowance on mobile plans, and the ability to use mobile devices with Wi-

Fi, this kind of activity may go unnoticed by users [27].

5.1 Impact of Classifier on Input Prediction

We compared three classification algorithms, namely ^-Nearest Neighbor (&-NN),

Random Forest, and Support Vector Machine (SVM), for use with inferring both tap and

trace inputs on an Android tablet. Our results suggest that although classification

accuracy is fairly similar among the three algorithms, random forest consistently had a

www.manaraa.com

mspmsm 'iMmwummusmmmumt,

43

Correctly Classified

^^^^■43.58%

37.27=*

27.29%

Random Guessng | 0.91%

SVM ■■■

3 " 1
Random Forest WfflSfflBB&8Bffiiffi!fflS$i&ffi%ffilf^^Ki ■ I ■ I ■ I

■ 89.75%

?84.75%

7=.:::t

— Random Guessng ■■■■12.50%

1
0

-f
o

ld

C
ro

s
i

V
a
lid

a
tio

n
 SVM

Random Forest

k-NN

■

3.85% Random Guessng

Figure 5.1: Classification accuracies of the three classification algorithms (Ar-NN, SVM, and random

forest) and the accuracy of random guessing for the 10-fold cross validation run of the three main

experiments (Tap input only, trace input using a pangram, and trace input using 110 common

words).

Correctly Classified

9 °

2 E
- E

g «
il.C9%

2 t>

K £

71.92%

Random Guessing |!J|3S5:e

Figure 5.2: Classification accuracies of the three classification algorithms (A-NN, SVM, and random

forest) and the accuracy of random guessing for the test set/training set run of the three main

experiments (Tap input only, trace input using a pangram, and trace input using 110 common

words).

www.manaraa.com

mUHpumuHuiuuuiiuiiuiiim u u y uuiuiiaiMuimuimiura

44

Model Build Time (sec)
13.31

1.61
0.29

k-NN Random SVM
Forest

10-Fold Cross-Valdaton

Tap

Z.21 0.68

k-NN Random SVM
Forest

10-Fold Cross-Valdaton

Trace: Pangram

4.22

k-NN Random SVM
Forest

10-Fold Cross-Va'datcn

Trace: 110 Common Words

Figure 5.3: Model build time requirements of the three classification algorithms (A-NN, SVM, and

random forest) guessing for the 10-fold cross validation run of the three main experiments (Tap

input only, trace input using a pangram, and trace input using 110 common words).

Model Build Time (sec)

13.55

1.72
3.05

0 0.25
Wm 0 0.23 0.75

0

k-NN Random
Forest

Test Set

SVM k-NN Random
Forest

Test Set

SVM k-NN Random SVM
Forest

Test Set

Tap Trace: Pangram "race: 110 Common Words

Figure 5.4: Model build time requirements of the three classification algorithms (ifc-NN, SVM, and

random forest) guessing for the test set/training set run of the three main experiments (Tap input

only, trace input using a pangram, and trace input using 110 common words).

www.manaraa.com

HffliiJmmuJUiumiiuJi'iiumiiuiimimmjmnH

45

higher inference rate than k-NN and built several times faster than SVM. However, when

a greater number of words are included in the input set (such as the 110 common word

experiment), SVM's greater accuracy may justify its larger time requirement. This

comparison of classification accuracy and built times are summarized in Figure 5.1-5.2

and 5.3-5.4, respectively.

5.2 Directions for Future Work

In the future, we plan to attempt to modify our system so that it can interpret

mixed tap and trace input. We believe it would be beneficial to determine whether it is

possible to use one person's input data to infer another user's input. If this is possible, it

would allow an attacker to build a training set without labeled input from the target,

which may be difficult to acquire (although it may be possible with social engineering). It

is also important that these experiments be repeated or extended with input data taken

from more users, to confirm that these results are valid for the input style of more than

just one user.

We have started data collection on a smart phone (Nexus 5), however we

postponed this endeavor because of the strong haptic feedback default to this device and

because of the difficulty retrieving the data files from the device, which made the process

much more time consuming than on the tablet. This is a known issue with the Android

MTP (Media Transfer Protocol), and it does not affect devices that use USB Mass

Storage [21]. Tablets were shown to have better inference accuracy than smart phones

previously in [19], however it may be interesting to determine how much haptic keyboard

feedback affects the ability of tap and traces to be inferred.

www.manaraa.com

uuiMUMiiiiiiiiaiiuiiuuMiuiijjjiJiiiiiiJiuyiuiiiimiiuiJJiiuuuini

46

Appendix

Classification Algorithms

Classification algorithms were used in this work and the related works to relate

the sensor data to the indicated output (the translation to text). The chosen algorithm or

algorithms use features derived from a training set of data to "learn" the relationship

between members within different categories. After this training phase, the membership

(or label) of new instances of data (or objects) can be predicted. The choice of algorithm

used for learning can affect how accurately membership is predicted, as can the training

and testing data sets and the features chosen from these sets [28]. The following three

sections give an overview of the specific classification algorithms use in this thesis.

Learning
Algorithm

Label
Information

,r >

Training
Set

Feature
Generation

 Features -

Training

Testing
Set

Prediction

Feature Classifier

La Del

Figure A.l: General overview of data classification. Source Tang [28].

www.manaraa.com

UJmHJJlUKUMUmililUliHHIWT

47

3
fr*%

J

<;

m
(

1

(((

Figure A.2: A-NN example. The question mark represents the unknown object, which has two

possible class labels: a star or a moon. If k = 1, only the moon labeled "1" is considered as a neighbor.

If * = 2, the two moons labeled "1" and "2" are considered. If k = 3, the star labeled "3" is also

considered, in addition to the two moons. In all three of these cases, the unknown object would be

predicted to be a moon because the majority of its nearest neighbors are moons.

A.l ^-Nearest Neighbor

The A:-Nearest Neighbor (kNN) algorithm is a lazy learner that is both easy to

understand and implement, compared to other classifiers. It can be used effectively for

both multi-modal classes and in situations where an object can have many class labels.

Because it is a lazy learner, kNN model building is computationally cheap. Using kNN

for classification, however, is relatively expensive. This is because kNN classifies an

unknown object by computing the distance between it and known (labeled) objects. The

www.manaraa.com

B9B&UUIUW1MUUUWJ

48

class labels of the nearest neighbors to the unknown object are then used to determine the

object's class label. The performance of this algorithm is affected by the choice of A: (the

number of neighbors considered) because k values that are too low can result in increased

noise sensitivity and high k values can lead to the class boundaries being unclear; the

combination of nearest neighbor class labels to determine the predicted label, which is

normally done using a majority vote but can be done using distance-weighted votes to

reduce the effect of the choice of A:; and the measurement method used to determine the

distance between an object and its neighbors, such as Euclidean distance or a cosine

measurement. In some modified variants of &-NN, weights can be applied to the training

set objects individually or to specific attributes to change their impact levels [28, 29]. An

example of A-NN can be seen in Figure A. 2.

A.2 Support Vector Machines

Support Vector Machines (SVM) are considered to be one of the most robust and

accurate classification algorithms. This algorithm has the benefit of requiring only a

fairly small training set, and it is not sensitive to the number of dimensions. The main

idea behind SVM algorithms is to create an optimal hyperplane that distinguishes

between groups with a maximal margin. This classification can be either linear or non-

linear (or kernel) [29]. In the non-linear case, three basic kernels are used with SVM: the

polynomial, radial basis function (RBF), and sigmoid kernels [30]. However, these are

not the only kernels available. Using a kernel function with a SVM allows for nonlinear

input relationships to be defined. SVM classifiers can also be both binary and multi-class.

While SVM algorithms can be slow due to their computational inefficiency, there have

www.manaraa.com

^^E

49

^Sunny

Humidity

High Normal

/ \

No Yes

Outlook

Overcast

{
Yes

Rain

Wind

Strong Weak

/ \
No Yes

Figure A.3: An example of a decision tree. This decision tree is for determining whether to play

outside depending on the weather outlook, and potentially the humidity or the wind depending on the

outlook [31].

been some successful efforts to optimize their speed and their accuracy may outweigh the

higher time requirement [29].

A.3 Random Forest

The random forest algorithm is an ensemble approach that involves the use of

multiple decision trees. These decision trees are created from different subsets of the

original feature set. The class labels predicted by each of the decision trees is compared

and the most commonly predicted class label is chosen as the final prediction. The goal of

this technique is to use a collection of weak learners (the decision trees) to build a strong

learner (the random forest) [32].

www.manaraa.com

auunmmniiUfflmimLiiimimnnniiiiimimtB^aM

50

Bibliography

[I] "McAfee Labs Threat Predictions 2015," [Online]. Available:
http://www.mcafee.com/us/resources/misc/infographic-threats-predictions-2015.pdf.

[2] "Juniper Networks Third Annual Mobile Threats Report: March 2012 Through March 2013,"
[Online]. Available: http://www.juniper.net/us/en/local/pdf/additional-resources/jnpr-2012-
mobile-threats-report.pdf.

[3] Lookout, "2014 Mobile Threat Report," [Online]. Available:
https://www.lookout.com/static/ee_images/Consumer_Threat_Report_Final_ENGLISH_l.14.pdi

[4] "F-Secure MobileThreat Report Ql 2014," [Online]. Available: http://www.f-
secure.com/static/doc/labs_global/Research/Mobile_Threat_Report_Ql_2014.pdf.

[5] M. Labs, "Threats Report June 2014," [Online]. Available:
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q 1 -2014.pdf.

[6] "Symantec Internet Security Threat Report Appendix 2014," [Online]. Available:
http://www.symantec.com/content/en/us/enterprise/other_resources/b-
ist r_appendices_vl 9_221284438.en-us.pdf.

[7] "Treand Micro Security Predictions for 2014 and Beyond," [Online]. Available:
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/reports/rpt-trend-micro-
security-predictions-for-2014-and-beyond.pdf.

[8] A. Al-Haiqi, M. Ismail and R. Nordin, "Keystrokes Inference Attack on Android: A Comparative
Evaluation of Sensors and Their Fusion," Journal of ICT Research and Applications, 2013.

[9] "FireEye," [Online]. Available: http://www.fireeye.com/blog/technical/botnet-activities-
research/2013/12/misosms. html.

[10] "Sophos," [Online]. Available: http://blogs.sophos.com/2014/02/05/sophoslabs-android-malware-
intercepts-sms-messages-to-steal-banking-info/.

[II] P. Marquardt, A. Verma, H. Carter and P. Traynor, "(sp) iPhone: decoding vibrations from
nearby keyboards using mobile phone accelerometers.," in 18th ACM Conference on Computer
and communications Security, 2011.

[12] S. Dey, N. Roy, W. Xu, R. R. Choudhury and S. Nelakuditi, "Accelprint: Imperfections of
accelerometers make smartphones trackable," in Network and Distributed System Security
Symposium, 2014.

[13] "Sensors Overview: Android Developers," [Online]. Available:

www.manaraa.com

WSBmBBSmsmBBBBBOBBBBS

51

http://developer.android.com/guide/topics/sensors/sensors_overview.html.

[14] "Teardown," [Online]. Available:
http://www.eetimes.com/author.asp?section_id=36&doc_id=1321925.

[15] "MathWorks," [Online]. Available: http://www.mathworks.com/help/simulink/samsung-galaxy-
android-devices.html.

[16] E. Owsu, J. Han, S. Das, A. Perrig and J. Zhang, "ACCessory: Password Inference using
Accelerometers on Smartphones," Workshop on Mobile Computing Systems and Applications,
2012.

[17] Z. Xu, K. Bai and S. Zhu, "TapLogger: Inferring User Inputs on Smartphone Touchscreens Uski£
On-board Motion Sensors," in Security and Privacy in Wireless and Mobile Networks, 2012.

[18] L. Cai and H. Chen, "On the Practicality of Motion Based Keystroke Inference Attack," in 5th
International Conference on Trust and Trustworthy Computing, 2012.

[19] E. Miluzzo, A. Varshavsky, S. Balakrishnan and R. R. Choudhury, "TapPrints: Your Finger Taps
Have Fingerprints," in International Conference on Mobile Systems, Applications, and Services,
2012.

[20] A. Al-Haiqi, M. Ismail and R. Nordin, "On the Best Sensor for Keystrokes Inference Attack on
Android," in International Conference on Electrical Engineering and Informatics, 2013.

[21] "Android Open Source Project Issue Tracker," [Online]. Available:
http://code. google. com/p/android/issues/detail?id=3 8282.

[22] "Apache Commons," [Online]. Available: http://commons.apache.org/proper/commons-
math/userguide/stat.html.

[23] "CSV2ARFF," [Online]. Available: http://slavnik.fe.uni-lj.si/markot/csv2arff/csv2arff.php.

[24] "Weka," [Online]. Available: http://www.cs.waikato.ac.nz/ml/weka/.

[25] "CNET," [Online]. Available: http://www.cnet.com/news/move-over-t9-here-comes-swype/.

[26] "Oxford Dictionaries," [Online]. Available: http://www.oxforddictionaries.com/words/the-oec-
facts-about-the-language.

[27] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu and M. Musolesi, "Sensing meets mobile
social networks: the design, implementation and evaluation of the cenceme application.," in 6th
ACM Conference on Embedded Network Sensor Systems, 2008.

[28] J. Tang, S. Alelyani and H. Liu, "Feature selection for classification: A review.," in Data
Classification: Algorithms and Applications, 2014.

www.manaraa.com

jmiimnimniuiimjHimiimmiiimjjiiijimiiiJunuBniJutiHHumiinjLiiiiiiLW

52

[29] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda and D. Steinberg, "Top 10
Algorithms in Data Mining," Knowledge and Information Systems, 2008.

[30] C. Hsu, C. Chang and C. J. Lin, "A Practical Guide to Support Vector Classification".

[31] T. Mitchell, Machine Learning, New York, NY: McGraw-Hill, Inc, 1997.

[32] L. Breiman and A. Cutler, "Random Forests," [Online]. Available:
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm.

[33] "Interpreting Results: Skewness and Kurtosis," [Online]. Available:
http://www.graphpad.eom/guides/prism/6/statistics/index.htm7stat_skewness_and_kurtosis.htm.

www.manaraa.com

	Using Unrestricted Mobile Sensors to Infer Tapped and Traced User Inputs
	Recommended Citation

	Using Unrestricted Mobile Sensors to Infer Tapped and Traced User Inputs

