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ABSTRACT 

As of January 2014, 58% of Americans over the age of 18 own a smart phone. Of 

these smart phones, Android devices provide some security by requiring that third-party 

application developers declare to users which components and features their applications 

will access. However, many of the real-time environmental sensors on devices are 

exempt from this requirement. We evaluate the possibility of exploiting this freedom to 

discretely use these sensors and expand on previous work by developing an application 

that can use the gyroscope and accelerometer to interpret what the user has written, even 

if trace input is used. Trace input is an option available on Samsung's default keyboard as 

well as in many popular third-party keyboard applications, such as Swype, SwiftKey, 

TouchPal, and GO Keyboard. "Tracing" an input involves the user dragging from the first 

letter of the intended word to the last letter without lifting his or her finger. The inclusion 

of trace input in a key logger application increases the amount of personal information 

that can be captured since users may choose to use the time saving trace-based input as 

opposed to the traditional tapping-based input. In this work, we attempt to interpret user 

input using accelerometer and gyroscope data given single letter tap and full word trace 

inputs. 

Keywords: mobile malware; key logger; mobile security; spyware; motion sensors; 

Android 
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Chapter 1 

Introduction 

According to McAfee, approximately half of all adults in the United States had 

personal data of some sort exposed in 2014, primarily through website breaches, point-of- 

sale theft, and falling victim to malicious software and social engineering [1]. Although 

there are some types of personal information that users may not be opposed to being 

collected (such as their application preferences), exposure of a user's passwords, credit 

card numbers, and other identifying information can have negative consequences for the 

user. Malware and in particular spyware, which is a type of malware that focuses on 

covertly gathering information, can be used to acquire these kinds of sensitive personal 

information and pose a potential risk for organizations that allow for the "bring your own 

device" policy [2]. 

The number of malware samples has been growing and their targets have been 

changing: 

• there was a 112% increase from 2013 to 2014 raising the total number to 

over 5 million samples detected by McAfee as seen Figure 1.1 [1] 

• there was a 75% increase in Android malware encounters in the US from 

2013 to 2014 [3] 

• the majority of new threat families, 275 out of the 277, found by F-Secure 

in the first quarter of 2014 specifically targeted Android devices [4] 
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Figure 1.1: The number of new malware samples detected each quarter by McAfee [5]. 

1.1   Current State of Android Key Loggers 

Surprisingly, while the portion of malware that perform activities to spy on users 

has increased from 12% to 28% between 2012 and 2013 and commercially marketed 

spyware for monitoring children's, a spouse's, or employees' activities are available, 

there has not been an Android key logger in the wild to our knowledge [6, 7]. A key 

logger is a type of spyware that secretly records the keys pressed by a user on a keyboard. 

The lack of an Android specific key logger is potentially due to the strict 

restricted access allowed to applications on the Android system, which enables only the 

application view that is in focus to intercept keystrokes [8], Although there are "key 

logger-like'" malware applications, such as MisoSMS and Andr/FakeKRB-H, which can 
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gain access to user inputted text (as well as received text) in SMS messages by 

circumventing Android security, we do not consider these applications in this study 

because they are restricted in types of input they can recover [9, 10]. For example, neither 

of the apps mentioned could intercept a password entered into a website viewed on a 

mobile browser. 

Although it is difficult for malware to get direct access to user input, it may be 

possible to perform indirect key logging on Android devices. The wide range of available 

sensors on Android systems allows developers to create applications that enhance a user's 

experience when using mobile devices. However, these sensors have the potential to be 

used as an attack vector for spyware because access to mobile sensors is not restricted by 

Android's permission system. This system provides some security for a device by 

allowing only applications with explicit permission from the user to access certain 

restricted resources. Two examples of restricted resources are the device's camera and 

microphone; these restrictions help prevent applications from photographing or recording 

the user without his or her knowledge, since most would consider these actions to be a 

breach in personal privacy. 

1.2   Mobile Sensors and Their Impact on Privacy 

Sensor data has the potential to be used to collect information about users that 

may be considered private, albeit not as directly as a photograph or voice recording. 

There are multiple works that demonstrate this potential misuse of sensors. 
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• Mobile accelerometer used to spy on PC keyboard: Work by 

Marquardt, et al. indicated that the accelerometer readings taken from a 

smartphone placed on the same desk as a personal computer keyboard can 

be sufficient to recover the typed text with rates up to 80% [11]. 

• Accelerometer readings used as smartphone fingerprint: A recent 

study suggests that accelerometer data could be used to identify different 

individual devices in the same way that a fingerprint can be used to 

identify individuals [12]. This identification is based on the differences in 

accelerometer readings across devices for the same stimuli and could 

allow a user and their application usage to be tracked. 

Whether the data comes from a nearby keyboard or a device's own screen, the 

ability to recover user entered text puts the user's passwords and other private 

information at risk. Because motion sensors on Android devices are not restricted and do 

not require the user's permission, the user could download and use applications that 

collect this data without ever knowing. This makes these unrestricted sensors a potential 

side channel that could be exploited in an Android key logging malware. 

1.3   Our Contributions 

1.1.1        Interpretation of Tap Input 

Several studies have demonstrated the potential for sensor data to be used to 

interpret text that is entered using a mobile device (see Section 2.2). A common feature 

of these past works is that input was assumed to be entered one letter at a time by tapping 
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Figure 1.2: An example of a tapped input, in this case "hello". Each letter must be tapped 

individually and one-at-a-time. 

on the screen of the device. An example of tap input is demonstrated in Figure 1.2. 

Because tap input has been a focus of previous work, the first phase of our work is to 

verify that our model is able to reasonably interpret tap inputs. However, the default 

software keyboards found on Samsung and Nexus devices as well as third-party keyboard 

applications, such as Swype, SwiftKey, TouchPal, and GO Keyboard, also have the 

option for users to enter text using a trace. This new type of input is the focus of the 

second phase of our work. 

1.1.2        Interpretation of Trace Input 

Trace input involves the user dragging from the first letter of the intended word to 

the last letter without lifting his or her finger, as shown in Figure 1.3. Unlike tap input 

which can only be a single letter, a trace input is always a word and must contain at least 

two letters. It is realistic to assume that while some users do only use the tap style of 
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Figure 1.3: An example of a trace input, in this case "hello". Tracing an input requires that a user 

drag their finger to each letter in the word without lifting their finger. The blue path represents the 

finger movement needed to input this word. 

inputting words into their devices, some users will also choose to use the trace style of 

input that has been made available by popular keyboard applications. For this reason, in 

the second phase of our work we evaluated the feasibility of interpreting trace input using 

a mobile device's motion sensors, which was not previously done in past works. 

As can be seen in Figure 1.4, both tap and trace input (letters and words) are 

handled similarly throughout our work in that 1) the motion data must be collected while 

the user taps or traces, 2) characteristics (also known as features) about each tap or trace 

must be calculated and stored, and 3) these characteristics are used by a classification 

algorithm that has been trained on sample words and letters to recreate the original word 

or letter from the motion data. 
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Figure 1.4: This figure gives an overview of how tap and trace inputs are interpreted in our work. 

Motion sensor data collection occurs in the user's device and processing and interpretation takes 

place on the attacker's computer. The differences in how tap and trace inputs are handled occur in 

how features are calculated for letters versus words. 

Our main contributions with this thesis are: 

1. An evaluation of whether the use of motion sensor data collected from the 

accelerometer and gyroscope is sufficient to infer user entered text when trace 

input is used. Our results using a pangram and common words as input showed 6 

to 47 times improvement over random guessing, depending on the number of 

words tested. This suggests that motion sensors do contribute to data leakage. 

2. An evaluation of the impact of using different classification algorithms on the 

accuracy and speed of the text inference. Our results showed that Random Forest 

and Support Vector Machine (SVM) classifiers consistently provided the best 

predictions, although SVM also required the most time. At a greater number of 
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words, SVM outperformed Random Forest, potentially rendering the extra time 

needed for SVM acceptable. 

3.   Our suggestions for further work. These recommendations include experiments 

with realistic mixed tap and trace input, input from multiple users, and using 

training data from one user and test data from another. 

1.4   Thesis Organization 

This thesis was divided into two separate phases. In the first phase, classification 

was performed for individual letters entered using tap input. In the second phase, 

classification was performed for only trace inputted words. Chapter 2 contains the 

background for this thesis work, including an overview of the sensor available on 

Android devices and an overview of similar work published by other authors. Chapter 3 

corresponds to the first phase and contains the details of our tap input only experimental 

setup and results. Chapter 4 describes the second phase of this thesis and is broken into 

two main trace input experiments. Chapter 5 concludes this work and our suggestions for 

further work. There is also an appendix with elementary information about the 

classification algorithms used. 
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Chapter 2 

Background 

2.1   Sensors Found on Mobile Devices 

The Android framework provides support for many different types of sensors that 

can collect information about motion, position, or the environment, thereby allowing for 

the development of applications that can respond to the user and his or her environment. 

These sensors may be one of the following: 

• Hardware-based sensors: physical components in the device that gather their 

data by direct measurement 

• Software-based sensors: use one or more hardware-based sensors to generate 

their data [13] 

Although there are many sensors available, the number and type of sensors 

present on a device depend on the device itself and the Android version of the device. For 

example, of the 83 devices analyzed by Teardown.com, 94% contained an accelerometer 

and 71% contained a gyroscope; other sensors, such as thermometers and barometers, are 

less common [13, 14]. Examples of mobile sensors and their type can be found in Table 

2.1. 
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Sensors 
Hardware-based Hardware or Software-based Software-based 

Accelerometers Gravity detection Orientation sensor* 
Thermometers Linear acceleration 
Gyroscopes Rotational vector measurement 
Light sensors 

Magnetic field sensors 
Barometers 

Proximity sensors 
Humidity sensors 

Table 2.1: Examples of sensors that can be found on mobile phones. *Deprecated in API level 8 

2.1.1        Motion Sensor Coordinate System 

A 3-axis coordinate system, as shown for both smartphones and tablets in Figure 

2.1, is used by motion and position sensors such as the accelerometer, gyroscope, and 

gravity sensor. This coordinate system does not change as the device is moved, even if 

the screen orientation of the device changes. With respect to this coordinate system, the 

accelerometer is the sensor that records the linear acceleration along each axis 

as meters I allowing it to register shaking or tilting of the device. The 

gyroscope is the sensor that measures the rotational speed around each axis of this 

coordinate system in ra     nVcpCond' wmcn translates to turning or spinning of the 

devices. 
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Figure 2.1: The 3-axis coordinate system used by Android device sensors. Source Math Works [15]. 

2.1.2        Sensor Sensitivity and Sampling Rate 

While the sensitivity and sampling ability of a sensor depends on the device in 

question, it is possible to use methods provided in the Android API to determine the 

minimum sampling delay available and to set the desired sampling rate to a specific range 

depending on the application's purpose. These include normal delay, delay suitable for 

gaming, delay for a user interface, and the least delay possible for the sensor [13]. 

2.2   Related Works 

Previous works have shown that data collected using the unrestricted motion 

sensors in mobile devices can be used for inferring either a user's keystrokes or the 

location on the device's screen that was tapped. These works were able to achieve their 

goals using different classification algorithms and feature combinations. These 

differences are enumerated in the following two sections, in which the works are 
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separated depending on whether they (1) used only accelerometer data or (2) used one or 

more sensors to collect data. 

2.2.1        Works Using Accelerometer Only 

2.2.1.1 Owsu et al.'s ACCessory Application 

In [16], an Android application called ACCessory was created with the aim to 

infer which area of the screen was tapped as well as the characters inputted using taps. 

This work used the random forest algorithm for classification, which was trained using 46 

features. The features used were extracted from the three axis component and the 

magnitude of acceleration, and can be seen in Table 2.2. 

The model presented was able to correctly infer 6 out of 99 passwords consisting 

of six characters each in a median of 4.5 trials. 

2.2.1.2 Xu, Bai, and Zhu's TapLogger Application 

The application known as TapLogger was developed by another set of researchers 

[17]. In this work, the goal was to evaluate if sensor data provided enough information to 

distinguish between taps on the number pad, which would allow for such activities as 

cracking a user's lock screen pin or determining credit card numbers entered onto the 

device. The 2-norm acceleration vector from the accelerometer data was used to describe 

the tap pattern. The orientation sensor (now depreciated) was also used in their work to 

infer the position of the tap. This model was able to correctly predict screen lock 
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Owsu [16] Cai and Chen [18] Miluzzo [19] Al-Haiqi [20] Our Work 

<u 
3 
% 

RMS 
RMSE 

MMIn 
AASbS 

# local peaks • 
= local crests 

TTP 
TTC 
RCR 
SMA 

Total time 
= samples 

Segment length 
APeak Time 
Peak interval 

Attenuation rate 
Vertex angles 

CPI • 
Moments • 
Skewness 
Kurtosis 
1-norm • 

Infinity norm • 
Forbenius norm • 

FFT • 
Mean 

Median 
StD • 

Table 2.2: Features used by previous works. These features include root mean square value (RMS), 

root mean square error (RMSE), average sample-by-sample change (AASbS), average time from a 

sample to a peak (TTP), average time from a sample to a crest (TTC), RMS cress rate (RCR), cubic 

spline interpolation (CPI), Fast Fourier Transform (FFT), and standard deviation (StD). Note that 

some of these features are extracted for each axis of multiple sensors, so the total number of features 

used in a work does not equal the number of features marked in this table. For example, Miluzzo et 

al. used a total of 273 features in their work. 
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passwords with a four character length with an average coverage rate of 40% and eight 

character length passwords with a rate of 45% [17]. 

2.2.2        Works Using Multiple Sensors 

2.2.2.1     Cai and Chen's Application 

In Cai and Chen's paper, the impacts of different classification algorithms and 

features, device types, key sets (such as alphabet-only keyboards compared to number- 

only keyboards), the device's screen orientation, and the keyboard layout on the 

performance tap-input inference based off sensor data were evaluated [18]. This work's 

pre-processing on the raw sensor data included de-jittering, low-pass filtering, calibration 

(such as removing the influence of gravity), and segmentation (separate each of the 

keystrokes). The authors also chose not to consider the z-axis component for either the 

accelerometer or the gyroscope. They also state that for motion data, magnitude is a poor 

feature. They instead chose to use the six features shown in Figure 2.2. 

This work also included another feature that the authors calculated as shown in 

Equation 1 below. 

hi = arctan(-i) x 180/TT (1) 

The two classification algorithms compared in this work were 

1) Dynamic Time Warping 

2) Support Vector Machines (SVM) 
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The authors concluded that both algorithms performed similarly and were 

effective for inferring user's tap-based input, although accuracy was affected by keyboard 

and device differences (for example, the accuracy increases when a device's screen is in 

the landscape orientation). The authors also noted that gyroscope data provided more 

accurate inference than accelerometer data [18]. 

2.2.2.2     Miluzzo et al.'s TapPrints Application 

The framework presented in [19], known as TapPrints, uses a combination of 

accelerometer and gyroscope data to infer user input for devices with different operating 

systems (iOS and Android) and for both smartphones and tablets. In this work, 273 

features were extracted from the time and frequency domains of the raw data. The 

authors used cubic spline interpolation to ensure that the number of sensor readings used 

for each tap were the same before feature extraction. The time domain features they chose 

to use were divided into column features (which used components of each sensor axis) 

and matrix features (which used the correlation between the three-axis sensor vectors). 

The column features included cubic spline interpolation, moments, the minimum 

and maximum values, skewness, and kurtosis; matrix features included the 1-norm, the 

Infinity norm, and the Frobenius norm. Other features were also extracted from processed 

data. For the frequency domain features, they performed a Fast Fourier Transform (FFT) 

on each of the sensor axis components and computed features from the power spectrum 

of the FFT values. These features are summarized in Table 2.2. 
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For classification, TapPrints used an ensemble classification approach in an 

attempt to increase the accuracy and robustness of their input predictions. The authors 

chose to use the following types of multi-class classifiers: 

1) k-nearest neighbor 

2) multinomial logistic regressions 

3) Support Vector Machines (both linear and with radial basis function 

kernels) 

4) random forests 

5) bagged decision trees. 

This model was able to achieve an average of above 50% accuracy for inferring 

sequentially tapped-inputted letters in landscape orientation and 27% when inferring a 

pangram while in portrait orientation [19]. 

2.2.2.3     AI-Haiqi et al.'s Application 

In a work comparing the effectiveness of different sensors and sensor 

combinations by Al-Haiqi et al., 18 features per sensor from the time domain were 

chosen [20]. These features can be seen in Table 2.2. 

The authors state that no set of features used in previous research for keystroke 

classification appears to clearly outperform the others used. For classification, the authors 

of this work determined that the Bagging classifier used with a Functional Trees based 

model performed best for their dataset. The taps used were estimated to be approximately 

80ms long, which, with the sampling rates used, resulted in five sensor samples for each 
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tap. The authors concluded that the gyroscope data was more effective for tapped key 

inference than data collected using the linear accelerometer, the rotational vector sensor, 

or a combination of the accelerometer and the magnetic field sensor [20]. 
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Chapter 3 

Interpretation of Tap Input 

In this chapter, we describe our method for inferring user text from accelerometer 

and gyroscope readings taken while the user taps each letter on a device. We describe our 

experimental approach and provide the details of our data collection, feature selection, 

feature extraction, and classification algorithm selection. We end this chapter with an 

evaluation of our results. 

3.1   Our Verification Experiment 

3.1.1 Motivation 

The aim of the first phase of this thesis was to confirm that our model was capable 

of producing tap-input inference accuracy similar to those seen in previous works before 

proceeding with the novel inference of trace-input. We also wanted to determine if there 

was a significant difference in performance when using other classifications algorithms 

that previously were not compared, which would allow us to potentially optimize text 

inference. 

3.1.2 Approach 

The first step of our approach was to create an Android application that could be 

used to collect gyroscope and accelerometer data on a device while a user entered text. 
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Figure 3.1: The overview of our approach. Data flows from the "infected" mobile device to a PC, 

where processing and classification occurs. 

Our application was responsible for outputting the comma-separated values (CSV) files 

containing the sensor data as well as the end time of each key tap. These files were then 

transferred from the device to a computer where all processing, learning, and prediction 

were performed. We then developed a program to extract our selected features from these 

data CSV files and output feature CSV files. These feature CSV files could then be 

converted to attribute-relation file format (ARFF) files. The ARFF files were then used 

with the machine learning software Weka, which we used for classification learning and 

prediction. This approach is also presented visually in Figure 3.1. 

3.1.2.1     Data Collection 

Two devices were initially used in this experiment: 
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1) a smart phone (the Nexus 5) 

2) a tablet (the Galaxy Tab Pro 8.4) 

We assume that the user holds the device in portrait orientation with his or her left 

hand and uses his or her right index figure for input. When using the tablet, the left hand 

was placed at the bottom left corner of the device. 

As mentioned, we developed a custom application for the Android platform to 

collect the sensor data. This application brings up the keyboard and allows a user to type 

into a text field. While open, the collector application produces three files corresponding 

to the following: 

• input completion timing, 

• the gyroscope readings 

• the accelerometer readings 

For the tap's completion time, we used a "TextWatcher" and a 

"TextChangedListener". Both the gyroscope and the accelerometer were set to use the 

lowest delay possible ("SENSOR_DELAY_FASTEST"), which for both sensors was 

approximately 5 microseconds. This collection application requires 

"WRITEEXTERNALSTORAGE" permission because the created files are stored 

locally in a user accessible folder. This is for our convenience and would likely not be 

present in an application aiming for attack. After data collection process was complete, 

we retrieved the data files for off-line processing. 

Raw accelerometer and gyroscope data was collected on the tablet device for each 

letter of the alphabet entered using tap-style input. This was done with 50 repetitions per 
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letter. Another 50 repetitions per letter were also collected approximately one month later 

for comparison. For the smart phone, data for only the first two letters was collected, 

again with 50 repetitions. We did not complete the data collection for the smartphone at 

this time point because of the difficulty with retrieving the data files from the device, 

which made the process much more time consuming than on the tablet. This is a known 

issue with the Android MTP (Media Transfer Protocol) and does not affect devices that 

use USB Mass Storage [21]. We therefore excluded the Nexus 5 from all further 

experiments. 

For the tap-input collected, individual tap events can be easily recognized in both 

the raw accelerometer and gyroscope data, as shown in Figure 3.2 and Figure 3.3. This is 

particularly true in the z-axis of the accelerometer sensor readings and the x-axis and y- 

axis sensor readings of the gyroscope. Note that the end time of each tap in these figures 

is denoted by a vertical line. 
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Figure 3.2: Raw accelerometer data showing seven tap-input letters. The end of each tap is denoted 

by a vertical bar. 
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Figure 3.3: Raw gyroscope data showing six tap-input letters. The end of each tap is denoted by a 

vertical bar. 
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3.1.2.2     Feature Selection and Extraction 

The size of the feature set used in previous tap interpretation related work varied 

from 7 features to 273 features [18, 19]. The work done in [19] was able to achieve good 

results with their chosen 273- feature set; however Al-Haiqi et al. noted in their work that 

currently there is no evidence that any of the feature sets used previously is better suited 

for inference than the others [20]. In our work, we chose to use a feature set consisting of 

the mean, median, minimum and maximum, skewness, and kurtosis of each sensor axis 

for a total of 36 features. A comparison of features used in various works can be seen in 

Chapter 2 in Table 2.2. 

The feature set used in our study is very similar to the one used in [20], with the 

exception that we did not use the standard deviation and they did not use kurtosis. The 

minimum and maximum were also used in [16, 19] and skewness and kurtosis were used 

in [19]. Altogether, each chosen feature was used in at least one of the previous works, as 

shown in Table 2.2. Our feature set also has the benefit of being computationally efficient 

in that it reduces the amount of time needed to extract the features from raw data. This 

simplicity would be ideal for an attacker working with a very large set of data because a 

complex feature set may make feature extraction prohibitively expensive. 

The values of the mean, median, min/max, skewness, and kurtosis were calculated 

for each axis component for both sensors using a custom program we developed, which 

1 Kurtosis measures the relative height and sharpness of a peak of the data. High kurtosis 
values correspond to high and sharp peaks, whereas low values indicate less distinctive 
peaks. The skewness measurement indicates whether the data is skewed to the left or to 
the right (the asymmetry). Positive skewness means the data is skewed to the right, 
negative skewness means it is skewed left, and a skewness value of zero indicates a 
symmetrical dataset [33]. 
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used the DescriptiveStatistics API available from Apache [22]. This program takes as 

input two CSV files, one containing the raw accelerometer and gyroscope data and one 

containing the input end times, and outputs one CSV file containing all the extracted 

features. 

Our feature extraction program assumed that each tap lasted for 200ms; this 

resulted in 42 records being used for feature extraction for each tap for all letters [17]. 

The CSV files containing the extracted features were also labeled with the corresponding 

letter the tap represented. 

3.1.2.3     Learning and Classification 

Before our labeled feature data could be used for classification, the CSV files 

were first converted into ARFF files using an online converter [23]. All classification 

learning and prediction was then performed using Weka version 3.6.10 [24]. 

We elected to compare the performance with regard to classification accuracy and 

the time required to build the classification model of the following classification 

algorithms: 

• ^-Nearest Neighbor (A-NN) 

• Support Vector Machine (SVM) 

• Random Forest 
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Figure 3.4: The breakdowns of the three different test and training sets used. Note that the first two 

sets used only the original 1300 taps collected. 

These classifiers were chosen because random forest was used in [16], SVM was used in 

[18], and all three were part of a large ensemble classifier in [19], but their performance 

was not previously compared. The &-NN algorithm was chosen for its relative simplicity, 

which allowed us to compare a lower complexity algorithm (&-NN) with a higher 

complexity algorithm (SVM). 

The A>NN and SVM algorithms correspond to the instance-based k (IBK) and 

sequential minimal optimization (SMO) classifiers in Weka, respectively. We used the 

default parameters available in Weka for all classification algorithms through our 

experiments. We made the decision not to optimize for two reasons: 1) to aid in 

repeatability and 2) because optimization for one user's input style may not be 

generalizable to other users. For &-NN, the default settings correspond to k = 1, with no 

distance weighting, and Euclidean distance function. The SVM had a polynomial kernel 
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shown in Equation 2 below, with a cache size of 250007 and p = 1. The random forest 

classifier used had no maximum depth and contained 10 trees. 

K(x, y) = <x, y>p or K(x, y) = (<x, y> + 1 )p (2) 

We performed a 10-fold cross-validation for each of these classifiers, with each of 

the classification algorithms trained using both the 1300 tap data set (50 taps per letter) 

and the 2600 tap data set (the original tap plus the taps collected a month later). 

We also performed multiple experiments with different test and training sets. 

These are described below and can be seen in Figure 3.4. 

• A 20/80 split test and training set: We tested the classification 

algorithms by splitting our 1300 tap data set into a training set and a 

testing set. The testing set consisted of 20% (260 taps) from the original 

set, and the training set contained the remaining instances (1060 taps). 

• A 10 instance test set per letter: We split individual letters into 

testing/training sets, such that the test set contained 10 instances of the 

letter of interest and the training set contained 1290 taps (the original data 

set minus the test set). 

• A 30 new instance test set per letter with the doubled training set: We 

collected 30 new taps of individual letters and used them as a test set for 

the classifiers and the doubled 2600 tap data set as the training set. 
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10-Fold Cross-Validation Test Set 

1-NN Random Forest SVM 1-NN Random Forest SVM 

Correctly Classified 74.69% 83.23% 82% 71.92% 78.85% 80.38% 

Relative Absolute Error 27.92% 37.10% 96.10% 30.91% 38.74% 96.06% 

Model Build Time (sec) 0 0.29 1.61 0 0.25 1.72 

10-Fold Cross-Validation w/ Double 

Data 

1-NN Random Forest SVM 

Correctly Classified 77.92% 86.50% 62.77% 

Relative Absolute Error 23.81% 32.72% 96.38% 

Model Build Time (sec) 0 0.71 4.34 

Figure 3.5: Accuracies and time requirements of the three classification algorithms we compared (k- 

nearest neighbor, support vector machine, and random forest). 

3.1.3 Results and Discussion 

For the 10-fold cross-validation experiments with the 1300 tap data set, the 

classification accuracies in terms of the percentage of correctly classified instances 

achieved using the SVM and the random forest were very similar, with the 1-NN being 

less accurate than both. The k-NN classifier was approximately 8% less accurate than the 

other two classifiers; however, it showed the smallest relative absolute error of the three 

classifiers. Doubling the dataset size resulted in only a slight increase in accuracy for k- 

NN and random forest classifiers. However, the accuracy of the SVM classifier decreased 

by almost 20%. While these results could suggest that collecting a large number of 

labelled tap inputs recorded from a single user may be unnecessary, this may also be an 

artifact of combining data collected a month apart, indicating a time sensitivity issue. 

When we split the data set into an 80/20 percent split training and test set, both 

SVM and random forest classifiers again performed better than k-NN, although in this 
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Letter Inputted 

Figure 3.6: Letter confusion seen during the 10-fold cross-validation of the random forest classifier. 

evaluation SVM outperformed the random forest classifier by a small amount. The k-NN 

classifier again showed the smallest relative absolute error of the three. These accuracies, 

as well as the relative absolute error and time each classifier took to build, can be seen in 

Figure 3.5. 

Accuracy when the test set consisted of 10 instances of one letter and the training 

set consisted of the 1290 remaining taps varied depending on the letter. For example, for 

the letter A both the SVM and random forest classifiers were able to correctly predict all 

10 instances and the k-NN predicted 9 out of 10 correctly. As can be seen in the 

confusion matrix (which shows both the correct and incorrect predictions made by a 

classifier) of the random forest classifier (Figure 3.6), A was also not misclassified as any 

other letter during the cross-validation experiment so this result was not unexpected. 
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Similarly, letters that were seen as frequently misclassified during the cross-validation 

experiment, such as the letter T, had comparatively low accuracy. The random forest and 

k-NN classifiers were able to predict correctly 7 out of 10 of the instances for the letter T, 

but the SVM predicted only 2 out of 10. 

As expected, letters close to each other on the keyboard do appear to be confused 

with each other more so than with other letters (such as, F and G or O and L), as seen in 

Figure 3.4. However, this was not always the case. For example, Z was confused with Y 

almost as often as it was with S when using the random forest classification algorithm, 

even though Z is spatially close to S but not Y. This same confusion was seen using the 

other classifiers as well but to a lesser degree. 

While the classifiers all performed well in our other tests, when we introduced 

newly collected tap data (30 instances) as the test set and used the doubled data set for 

training, all of the classifiers achieved around 65% classification accuracy (66.7% by 

SVM and random forest and 63.3% by k-NN; data not shown). As previously mentioned, 

we believe this could be due to differences in the feature values over time because the 

taps used to double the data set were collected closer to time to the new test set taps than 

the original data set taps were. We have not yet found the cause of this difference, though 

a change in the feature set may allow for stored labelled tap data to be used for more long 

term interpretation. 

Aside from the time-sensitive nature of our current feature set, all three classifiers 

were able to infer the letters represented by the tap input with a much greater accuracy 

than the 1/26 (3.85%) accuracy expected for randomly guessing English letters. For the 

results using the 1300 tap data set, the accuracy of tap classification was 18-20 times 
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better than random guessing. Our results are similar to those found in the literature; for 

example, in [19] a mean accuracy of 65.11% was achieved when taps were collected on a 

tablet in landscape orientation. As expected, our results were better than those that were 

obtained using only the gyroscope, with only 30-33% accuracy achieved in [18] for 

tapped letters collected on a tablet in landscape orientation. Although higher accuracies 

of over 90% were achieved in [8], this work evaluated only the inference of tapped 

numbers. 

In terms of the performance of the classification algorithms, SVM and random 

forest consistently performed slightly better than k-NN, although k-NN always showed 

the least relative absolute error. While both the random forest and k-NN built quickly, the 

SVM classifier was comparatively sluggish, taking over five times longer to build than 

the random forest in all tests. This difference in computation time lead us to conclude that 

random forest and k-NN are better suited for this type of inference. 
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Chapter 4 

Interpretation of Trace Input 

In this chapter, we describe our method for inferring user text from accelerometer 

and gyroscope readings taken while the user traces whole words on a device. We 

performed two experiments for trace input: one using pangrams as input and one using 

common English words. In this chapter we explain our approach and detail our data 

collection, feature selection and extraction, classification algorithm selection and 

learning, and evaluate our results. 

4.1   Pangram Experiment 

4.1.1 Motivation 

We chose to perform an experiment using a pangram as the input to ensure that all 

letters of the alphabet were included. Not all letters were inferred with the same accuracy 

during our tap experiment, so we wanted to use words that covered all of the keyboard 

locations. 

4.1.2 Approach 

The same approach was used for interpreting trace-input as was used for tap-input 

(shown in Figure 3.1), with a few modifications that are enumerated in Section 4.1.2.1. 
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We used our application to output CSV files containing the sensor data and the end time 

of each word trace. These files were transferred from the device to a computer, where all 

processing, learning, and prediction was performed. Our selected features were computed 

from these data CSV files using our custom feature extraction application and contained 

in the outputted feature CSV files. These feature CSV files could then be converted to 

ARFF files and used with the classification algorithms to infer the inputted words. 

4.1.2.1 Data Collection 

Trace input data was collected using the same mobile device, screen orientation, and 

custom Android application and by the same user as the tap input data. Raw 

accelerometer and gyroscope data was collected for the trace of each word in the 

pangram "The quick brown fox jumps over the lazy dog." with 50 repetitions per word. 

Because our collection application used a "TexfWatcher" and a "TextChangedListener" 

to record the end time of each trace, time entries for the space added automatically by the 

Samsung after a word is traced were also in the outputted CSV file and had to be 

removed manually before feature extraction. 

4.1.2.2 Feature Selection and Extraction 

The feature set we used to infer the collected trace data were the same as those 

used for tap input inference: the mean, median, minimum and maximum, skewness, and 

kurtosis values of each sensor axis (also shown in Figure 2.2). We made this decision to 

see if the same feature set could be used to interpret both tap and trace input. 
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We modified our feature extraction program with the assumption that each word 

took 1 second to trace. This choice came from the original claims of the Swype keyboard, 

the first that used trace input, which stated that a user could input 55 words per minute 

[25]. Because the time a user begins the trace is not available to use, this second is 

collected starting from the end of the trace and goes backwards. As a result, 210 records 

are used to compute the features of every traced word regardless of whether the trace was 

longer or shorter than 1 second. As with the tap data, the feature-containing CSV files 

were converted to ARFF files for classification and learning. 

4.1.2.3     Learning and Classification 

The SVM, k-NN, and random forest classification algorithms were used to 

determine their potential for inferring words inputted using a trace. Their inference 

performance and required computation times were also compared. 

A 10-fold cross-validation was performed with each classifier trained using the 

full 400 trace data set. We also evaluated the classifiers by splitting the data set into a test 

set containing 20% of the original data set (40 traces) and a training set (360 traces). 

4.1.3        Results and Discussion 

Classifiers using any of the three classification algorithms were able to infer the 

inputted words with better accuracy than randomly guessing one of the eight words 

(12.5%). The SVM had the highest percentage of correctly identified words (89.75%), 

followed by the random forest (84.75%), and then the k-NN classifier (79%) for the 10- 
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10-Fold Cross-Validation 

ifc-NN Random Forest SVM 

Correctly Classified 79.00% 84.75% 89.75% 

Relative Absolute Error 25.65% 32.86% 86.29% 

Model Build Time (sec) 0 0.22 0.68 

Test Set 

A:-NN Random Forest SVM 

Correctly Classified 75.00% 90.00% 85.00% 

Relative Absolute Error 30.05% 33.64% 86.13% 

Model Build Time (sec) 0 0.23 0."5 

Figure 4.1: Accuracies and time requirements of the three classification algorithms (k-nearest 

neighbor, support vector machine, and random forest) for trace input. 
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fold cross-validation. As in the results for the tap input, the smallest relative absolute 

error was seen with the k-NN classifier. 

When compared using the split test and training sets, the random forest performed 

best in terms of accuracy (90%), followed by the SVM (85%) and the k-NN (75%) 

classifiers. The random forest and k-NN classifiers showed similar relative absolute error; 

both were much lower than SVM. As seen in the tap interpretation experiments, SVM 

took several times longer to build than the random forest classifier. These results and 

those from the cross-validation are summarized in Figure 4.1. Taking into account both 

its inference accuracy and build time, the random forest algorithm appears to be the best 

choice out of the three for trace-inputted word interpretation. However, we found it 

interesting that all three algorithms were able to identify the traces. It should be noted, of 
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*-NN SVM Random Forest 

Word Confused with Confused with Confused with 

quick over/fox/dog dog lazy 

the jumps jumps jumps 

over quick lazy quick 

lazy fox brown fox 

jumps the the the 

fox dog dog lazy 

dog fox over over 

brown lazy lazy lazy 

Figure 4.2: Letter confusion seen during the 10-fold cross-validation of all three classifiers for trace 

input. 

course, that while the inference accuracy is high, these results demonstrate only 6-7 times 

improvement over random guessing because of the low number of words tested. 

When comparing the confusion matrices for the cross-validation trials, it can be 

seen that misclassification is not as easy to interpret as with the tap inputs. The most 

frequently confused word for each trace with each classifier is shown in Figure 4.2. Note 

that with k-NN, "quick" was confused with three other words with the same frequency. 

Length of the word does not appear to contribute to the confusion, which is expected 

because we treated each trace as the same length when extracting the features. 

Interestingly, only "jumps" and "the" were misclassified with each other in both 

directions; for example, "brown" was confused with "lazy" the most frequently with all 

classifiers but "lazy" was not most often confused with "brown" in two of the three 

classifiers. While we would expect the misclassification to be due to similarities in the 
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motion of the trace pattern of each word, it is difficult to visualize these similarities. For 

example, although both "the" and "jumps" end with the trace going to the left of the 

keyboard, "the" is more centralized on the keyboard and the distance between the keys is 

comparatively small. In contrast, "jumps" starts at the far right of the keyboard and ends 

going down and left all the way from "P" to "S." Unlike with tap inference where a 

misclassified letter is likely a letter spatially close on the keyboard, misclassification of 

trace input appears to be much less intuitive. 

4.2   Common Word Experiment 

4.2.1        Motivation and Approach 

The aim of this experiment was to determine if common, short words could be 

inferred using sensor data when traced by a user. Because these words are considered 

very common, using them as input allows us to determine how effective trace inference 

would be for everyday text input. We also included a greater variety words in our data 

set, again to be more representative of a user's realistic usage. For the approach, refer 

back to Section 4.1.2. 

4.2.2.1     Data Collection 

Trace input data was collected using the same mobile device, screen orientation, and 

custom Android application and by the same user as the tap input data. Raw 

accelerometer and gyroscope data was collected for the trace of each of the 110 most 



www.manaraa.com

1    the 31 or 59 know 87 work 

2    be 32 an 60 take 88 first 

3    to 33 will 61 people 89 well 

4    of 34 my 62 into 90 way 

5    and 35 one 63 year 91 even 

7    in 36 all 64 your 92 new 

8    that 37 would 65 good 93 want 

9    have 38 there 66 some 94 because 

11   it 39 their 67 could 95 any 

12   for 40 what 68 them 96 these 

13   not 41 so 69 see 97 give 

14   on 42 up 70 other 98 day 

15   with 43 out 71 than 99 most 

16   he 44 if 72 then 100 us 

17   as 45 about 73 now 2 person 

18   you 46 who 74 look 6 thing 

19   do 47 get 75 only 7 man 

20   at 48 which 76 come 8 world 

21   this 49 go 77 its 9 life 
22   but 50 me 78 over 10 hand 

23   his 51 when 79 think 11 part 

24   by 52 make 80 also 12 child 

25   from 53 can 81 back 13 eye 

26   they 54 like 82 after 14 woman 

27   we 55 time 83 use 15 place 

28   say 56 no 84 two 17 week 

29   her 57 just 85 how 

30   she 58 him 86 our 
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Figure 4.3: The 110 words used as input for the "common words" trace experiment. The number 

indicates how common the word is (lower is more common), according to the Oxford English 

Dictionary [26]. Italicized words are from the list of most common content words. 
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common words, according to the Oxford English Dictionaries and shown in Figure 4.3, 

with 50 repetitions per word [26]. Note that we excluded single letter words and included 

some of the most common content words for a total of 110 words. Because our collection 

application used a "TextWatcher" and a "TextChangedListener" to record the end time of 

each trace, time entries for the space added automatically by the Samsung after a word is 

traced were also in the outputted CSV file and had to be removed manually before feature 

extraction. 

4.2.2.2     Feature Selection and Extraction 

As in the pangram experiment, the feature set we used to infer was the same as 

the one used for tap input inference: the mean, median, minimum and maximum, 

skewness, and kurtosis values of each sensor axis. 

Unlike in the pangram experiment, we chose to assume that each word took 0.5 

seconds to trace in our feature extraction program, rather than 1 second per trace. This 

decision was made because of the nature of the words used as input; that is, many of the 

words were short and contained only two to three characters (see Figure 4.3). Although 

reducing the time assumed for each trace decreases the amount of information we can 

collect from longer word traces, it also helps prevent more than one trace being included 

in what we assume to be the features of only one trace. As a result, 105 records were used 

to compute the features of every traced word regardless of whether the trace was longer 

or shorter than 0.5 seconds. As in the tap and pangram experiment, the feature-containing 

CSV files were converted to ARFF files for classification and learning. 
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4.2.2.3     Learning and Classification 

As in the other experiments, the SVM, k-NN, and random forest classification 

algorithms were used to determine their potential for inferring words inputted using a 

trace. Their inference performance and required computation times were also compared. 

A 10-fold cross-validation was performed with each classifier trained using the 

full 5500 trace data set. We also evaluated the classifiers by splitting the data set into a 

test set containing 20% of the original data set (1100 traces) and a training set (4400 

traces). 

4.2.3        Results and Discussion 

Although the classification accuracies of all three classification algorithms were 

quite low, using the classifiers to infer the inputted words had significantly higher 

accuracy than randomly guessing one of the 110 words (0.91%). As in the pangram 

experiment, the SVM had the highest percentage of correctly identified words (43.58%), 

followed by the random forest (37.27%), and then the k-NN classifier (27.29%) for the 

10-fold cross-validation. The smallest relative absolute error was again seen with the k- 

NN classifier, although all of the classifiers had greater than 70% error. 

The results for the split test and training set runs were very similar to the cross- 

validation. The SMV still performed best in terms of accuracy (41.09%), followed by the 

random forest (32.64%) and the k-NN (25.36%) classifiers. The relative absolute error 

was also still above 70% for all classifiers, with SVM having the highest and k-NN 
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10-Fold Cross-Validation 

t-NN Random Forest SVM 

Correctly Classified 27.29% 37.27% 43.58% 

Relative Absolute Error 73.95% 80.90% 99.15% 

Model Build Time (sec) 0 4.22 13.31 

Test Set 

fr-NN Random Forest SVM 

Correctly Classified 25.36% 32.64% 41.09% 

Relative Absolute Error 75.91% 82.99% 99.14% 

Model Build Time (sec) 0 3.05 13.55 

Figure 4.4: Accuracies and time requirements of the three classification algorithms compared (k- 

nearest neighbor, support vector machine, and random forest). 

having the lowest. As expected from the pangram experiment, the SVM took 

approximately three times longer to build than the random forest classifier. These results 

and those from the cross-validation are summarized in Figure 4.4. Although it is the 

slowest of the classification algorithm examined, SVM allowed for an inference accuracy 

that was over 6% higher than the accuracy obtained using the random forest algorithm. 

Unlike with the pangram, where the random forest outperformed the SVM when using 

the test set, the best accuracy was achieved using SVM in all cases. Because all 

accuracies are below 50%, the benefit of increased accuracy when using SVM outweighs 

its higher time requirements, making it the best choice in this experiment. 

Although the inference accuracy was low, it should be noted that using the motion 

sensor data was 28-47 times better than random guessing. This improvement was 

achieved without any optimization or customization of the classification algorithms. By 
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simply changing the complexity factor used with the SVM algorithm from 1 to 2, the 

inference accuracy was increased to 46.80% (10-fold cross-validation). 



www.manaraa.com

msBBBmmmm 

42 

Chapter 5 

Conclusion and Future Work 

We have collected gyroscope and accelerometer data from an Android tablet 

while a user inputs text and have demonstrated the potential for this data to be used to 

infer the user text whether it was tapped or traced. Although our work is only in its early 

stages, it adds to the evidence garnered by previous works that leaving a mobile device's 

motion sensors unrestricted may be a threat to users' privacy. An attacker could 

potentially modify a legitimate application to collect sensor data in the background with 

the user's knowledge and use it to rebuild user text containing passwords or other 

sensitive material regardless of whether the user's preference is for tapping letter-by- 

letter or tracing full words. Due to the low battery consumption of the sensors, the ever 

increasing data allowance on mobile plans, and the ability to use mobile devices with Wi- 

Fi, this kind of activity may go unnoticed by users [27]. 

5.1   Impact of Classifier on Input Prediction 

We compared three classification algorithms, namely ^-Nearest Neighbor (&-NN), 

Random Forest, and Support Vector Machine (SVM), for use with inferring both tap and 

trace inputs on an Android tablet. Our results suggest that although classification 

accuracy is fairly similar among the three algorithms, random forest consistently had a 
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Figure 5.1: Classification accuracies of the three classification algorithms (Ar-NN, SVM, and random 

forest) and the accuracy of random guessing for the 10-fold cross validation run of the three main 

experiments (Tap input only, trace input using a pangram, and trace input using 110 common 

words). 
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Figure 5.2: Classification accuracies of the three classification algorithms (A-NN, SVM, and random 

forest) and the accuracy of random guessing for the test set/training set run of the three main 

experiments (Tap input only, trace input using a pangram, and trace input using 110 common 

words). 
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Figure 5.3: Model build time requirements of the three classification algorithms (A-NN, SVM, and 

random forest) guessing for the 10-fold cross validation run of the three main experiments (Tap 

input only, trace input using a pangram, and trace input using 110 common words). 
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Figure 5.4: Model build time requirements of the three classification algorithms (ifc-NN, SVM, and 

random forest) guessing for the test set/training set run of the three main experiments (Tap input 

only, trace input using a pangram, and trace input using 110 common words). 
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higher inference rate than k-NN and built several times faster than SVM. However, when 

a greater number of words are included in the input set (such as the 110 common word 

experiment), SVM's greater accuracy may justify its larger time requirement. This 

comparison of classification accuracy and built times are summarized in Figure 5.1-5.2 

and 5.3-5.4, respectively. 

5.2   Directions for Future Work 

In the future, we plan to attempt to modify our system so that it can interpret 

mixed tap and trace input. We believe it would be beneficial to determine whether it is 

possible to use one person's input data to infer another user's input. If this is possible, it 

would allow an attacker to build a training set without labeled input from the target, 

which may be difficult to acquire (although it may be possible with social engineering). It 

is also important that these experiments be repeated or extended with input data taken 

from more users, to confirm that these results are valid for the input style of more than 

just one user. 

We have started data collection on a smart phone (Nexus 5), however we 

postponed this endeavor because of the strong haptic feedback default to this device and 

because of the difficulty retrieving the data files from the device, which made the process 

much more time consuming than on the tablet. This is a known issue with the Android 

MTP (Media Transfer Protocol), and it does not affect devices that use USB Mass 

Storage [21]. Tablets were shown to have better inference accuracy than smart phones 

previously in [19], however it may be interesting to determine how much haptic keyboard 

feedback affects the ability of tap and traces to be inferred. 
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Appendix 

Classification Algorithms 

Classification algorithms were used in this work and the related works to relate 

the sensor data to the indicated output (the translation to text). The chosen algorithm or 

algorithms use features derived from a training set of data to "learn" the relationship 

between members within different categories. After this training phase, the membership 

(or label) of new instances of data (or objects) can be predicted. The choice of algorithm 

used for learning can affect how accurately membership is predicted, as can the training 

and testing data sets and the features chosen from these sets [28]. The following three 

sections give an overview of the specific classification algorithms use in this thesis. 

Learning 
Algorithm 

Label 
Information 

,r                                  > 

Training 
Set 

Feature 
Generation 

  Features - 

Training 

Testing 
Set 

Prediction 

Feature Classifier 

La Del 

Figure A.l: General overview of data classification. Source Tang [28]. 
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Figure A.2: A-NN example. The question mark represents the unknown object, which has two 

possible class labels: a star or a moon. If k = 1, only the moon labeled "1" is considered as a neighbor. 

If * = 2, the two moons labeled "1" and "2" are considered. If k = 3, the star labeled "3" is also 

considered, in addition to the two moons. In all three of these cases, the unknown object would be 

predicted to be a moon because the majority of its nearest neighbors are moons. 

A.l ^-Nearest Neighbor 

The A:-Nearest Neighbor (kNN) algorithm is a lazy learner that is both easy to 

understand and implement, compared to other classifiers. It can be used effectively for 

both multi-modal classes and in situations where an object can have many class labels. 

Because it is a lazy learner, kNN model building is computationally cheap. Using kNN 

for classification, however, is relatively expensive. This is because kNN classifies an 

unknown object by computing the distance between it and known (labeled) objects. The 
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class labels of the nearest neighbors to the unknown object are then used to determine the 

object's class label. The performance of this algorithm is affected by the choice of A: (the 

number of neighbors considered) because k values that are too low can result in increased 

noise sensitivity and high k values can lead to the class boundaries being unclear; the 

combination of nearest neighbor class labels to determine the predicted label, which is 

normally done using a majority vote but can be done using distance-weighted votes to 

reduce the effect of the choice of A:; and the measurement method used to determine the 

distance between an object and its neighbors, such as Euclidean distance or a cosine 

measurement. In some modified variants of &-NN, weights can be applied to the training 

set objects individually or to specific attributes to change their impact levels [28, 29]. An 

example of A-NN can be seen in Figure A. 2. 

A.2 Support Vector Machines 

Support Vector Machines (SVM) are considered to be one of the most robust and 

accurate classification algorithms. This algorithm has the benefit of requiring only a 

fairly small training set, and it is not sensitive to the number of dimensions. The main 

idea behind SVM algorithms is to create an optimal hyperplane that distinguishes 

between groups with a maximal margin. This classification can be either linear or non- 

linear (or kernel) [29]. In the non-linear case, three basic kernels are used with SVM: the 

polynomial, radial basis function (RBF), and sigmoid kernels [30]. However, these are 

not the only kernels available. Using a kernel function with a SVM allows for nonlinear 

input relationships to be defined. SVM classifiers can also be both binary and multi-class. 

While SVM algorithms can be slow due to their computational inefficiency, there have 
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Figure A.3: An example of a decision tree. This decision tree is for determining whether to play 

outside depending on the weather outlook, and potentially the humidity or the wind depending on the 

outlook [31]. 

been some successful efforts to optimize their speed and their accuracy may outweigh the 

higher time requirement [29]. 

A.3 Random Forest 

The random forest algorithm is an ensemble approach that involves the use of 

multiple decision trees. These decision trees are created from different subsets of the 

original feature set. The class labels predicted by each of the decision trees is compared 

and the most commonly predicted class label is chosen as the final prediction. The goal of 

this technique is to use a collection of weak learners (the decision trees) to build a strong 

learner (the random forest) [32]. 
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